MT
Miguel Torres
Author with expertise in Molecular Mechanisms of Cardiac Development and Regeneration
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(60% Open Access)
Cited by:
3,448
h-index:
54
/
i10-index:
97
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pax-2 controls multiple steps of urogenital development

Miguel Torres et al.Dec 1, 1995
ABSTRACT Urogenital system development in mammals requires the coordinated differentiation of two distinct tissues, the ductal epithelium and the nephrogenic mesenchyme, both derived from the intermediate mesoderm of the early embryo. The former give rise to the genital tracts, ureters and kidney collecting duct system, whereas mesenchymal components undergo epithelial transformation to form nephrons in both the mesonephric (embryonic) and metanephric (definitive) kidney. Pax-2 is a transcriptional regulator of the paired-box family and is widely expressed during the development of both ductal and mesenchymal components of the urogenital system. We report here that Pax-2 homozygous mutant newborn mice lack kidneys, ureters and genital tracts. We attribute these defects to dysgenesis of both ductal and mesenchymal components of the developing urogenital system. The Wolffian and Müllerian ducts, precursors of male and female genital tracts, respectively, develop only partially and degenerate during embryogenesis. The ureters, inducers of the metanephros are absent and therefore kidney development does not take place. Mesenchyme of the nephrogenic cord fails to undergo epithelial transformation and is not able to form tubules in the mesonephros. In addition, we show that the expression of specific markers for each of these components is de-regulated in Pax-2 mutants. These data show that Pax-2 is required for multiple steps during the differentiation of intermediate mesoderm. In addition, Pax-2 mouse mutants provide an animal model for human hereditary kidney diseases.
0
Citation864
0
Save
0

A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart

José Nicolás-Ávila et al.Sep 15, 2020
Cardiomyocytes are subjected to the intense mechanical stress and metabolic demands of the beating heart. It is unclear whether these cells, which are long-lived and rarely renew, manage to preserve homeostasis on their own. While analyzing macrophages lodged within the healthy myocardium, we discovered that they actively took up material, including mitochondria, derived from cardiomyocytes. Cardiomyocytes ejected dysfunctional mitochondria and other cargo in dedicated membranous particles reminiscent of neural exophers, through a process driven by the cardiomyocyte’s autophagy machinery that was enhanced during cardiac stress. Depletion of cardiac macrophages or deficiency in the phagocytic receptor Mertk resulted in defective elimination of mitochondria from the myocardial tissue, activation of the inflammasome, impaired autophagy, accumulation of anomalous mitochondria in cardiomyocytes, metabolic alterations, and ventricular dysfunction. Thus, we identify an immune-parenchymal pair in the murine heart that enables transfer of unfit material to preserve metabolic stability and organ function.Video Abstracthttps://www.cell.com/cms/asset/46565560-674e-41de-80b4-3f0988fd287f/mmc7.mp4Loading ...(mp4, 11.65 MB) Download video
0

Extensive scar formation and regression during heart regeneration after cryoinjury in zebrafish

Juan González‐Rosa et al.Mar 24, 2011
The zebrafish heart has the capacity to regenerate after ventricular resection. Although this regeneration model has proved useful for the elucidation of certain regeneration mechanisms, it is based on the removal of heart tissue rather than its damage. Here, we characterize the cellular response and regenerative capacity of the zebrafish heart after cryoinjury, an alternative procedure that more closely models the pathophysiological process undergone by the human heart after myocardial infarction (MI). Localized damage was induced in 25% of the ventricle by cryocauterization (CC). During the first 24 hours post-injury, CC leads to cardiomyocyte death within the injured area and the near coronary vasculature. Cell death is followed by a rapid proliferative response in endocardium, epicardium and myocardium. During the first 3 weeks post-injury cell debris was cleared and the injured area replaced by a massive scar. The fibrotic tissue was subsequently degraded and replaced by cardiac tissue. Although animals survived CC, their hearts showed nonhomogeneous ventricular contraction and had a thickened ventricular wall, suggesting that regeneration is associated with processes resembling mammalian ventricular remodeling after acute MI. Our results provide the first evidence that, like mammalian hearts, teleost hearts undergo massive fibrosis after cardiac damage. Unlike mammals, however, the fish heart can progressively eliminate the scar and regenerate the lost myocardium, indicating that scar formation is compatible with myocardial regeneration and the existence of endogenous mechanisms of scar regression. This finding suggests that CC-induced damage in zebrafish could provide a valuable model for the study of the mechanisms of scar removal post-MI.
6

P53 and BCL-2 family proteins PUMA and NOXA define competitive fitness in Pluripotent Cells

Jose Valverde-Lopez et al.May 24, 2023
ABSTRACT Cell Competition is a process by which neighboring cells compare their fitness. As a result, viable but suboptimal cells are selectively eliminated in the presence of fitter cells. In the early mammalian embryo, epiblast pluripotent cells undergo extensive Cell Competition, which prevents suboptimal cells from contributing to the newly forming organism. While competitive ability is regulated by MYC in the epiblast, the mechanisms that contribute to competitive fitness in this context are largely unknown. Here, we report that P53 and its pro-apoptotic targets PUMA and NOXA regulate apoptosis susceptibility and competitive fitness in pluripotent cells. PUMA is widely expressed specifically in pluripotent cells in vitro and in vivo . We show that the p53-PUMA/NOXA pathway regulates mitochondrial membrane potential and oxidative status. We found that P53 regulates MYC levels in pluripotent cells, which connects these two Cell competition pathways, however, MYC and PUMA/NOXA levels are independently regulated by P53. We propose a model that integrates a bifurcated P53 pathway regulating both MYC and PUMA/NOXA levels and determines competitive fitness through regulation of mitochondrial activity.
6
Citation2
0
Save
45

Spatial enhancer activation determines inhibitory neuron identity

Elena Dvoretskova et al.Jan 30, 2023
Abstract The mammalian telencephalon contains a tremendous diversity of GABAergic projection neuron and interneuron types, that originate in a germinal zone of the embryonic basal ganglia. How genetic information in this transient structure is transformed into different cell types is not yet fully understood. Using a combination of in vivo CRISPR perturbation, lineage tracing, and ChIP-seq in mice, we found that the transcription factor MEIS2 favors the development of projection neurons through genomic binding sites in regulatory enhancers of projection neuron specific genes. MEIS2 requires the presence of the homeodomain transcription factor DLX5 to direct its functional activity towards these sites. In interneuron precursors, the activation of projection neuron specific enhancers by MEIS2 and DLX5 is repressed by the transcription factor LHX6. When MEIS2 carries a mutation associated with intellectual disability in humans, it is less effective at activating enhancers involved in projection neuron development. This suggests that GABAergic differentiation may be impaired in patients carrying this mutation. Our research supports a model (“Differential Binding‘) where the spatial specific composition of transcription factors at cis -regulatory elements determines differential gene expression and cell fate decisions in the ganglionic eminence.
45
Citation2
0
Save
11

SpatialDDLS: An R package to deconvolute spatial transcriptomics data using neural networks

Diego Mañanes et al.Sep 3, 2023
Abstract Summary Spatial transcriptomics has changed our way to study tissue structure and cellular organization. However, there are still limitations in its resolution, and most available plaXorms do not reach a single cell resolution. To address this issue, we introduce SpatialDDLS, a fast neural network-based algorithm for cell type deconvolution of spatial transcriptomics data. SpatialDDLS leverages single-cell RNA sequencing (scRNA-seq) data to simulate mixed transcriptional profiles with predefined cellular composition, which are subsequently used to train a fully-connected neural network to uncover cell type diversity within each spot. By comparing it with two state-of-the-art spatial deconvolution methods, we demonstrate that SpatialDDLS is an accurate and faster alternative to the available state-of-the art tools. Availability and implementation The R package SpatialDDLS is available via CRAN-The Comprehensive R Archive Network: https://CRAN.R-project.org/package=SpatialDDLS . A detailed manual of the main functionalities implemented in the package can be found at https://diegommcc.github.io/SpatialDDLS . Contact fscabo@cnic.es Supplementary information Supplementary data are available at Bioinformatics online.
Load More