TM
Timothy McMillen
Author with expertise in Diagnosis and Management of Hypertrophic Cardiomyopathy
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
9
h-index:
18
/
i10-index:
25
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Danicamtiv increases myosin recruitment and alters the chemomechanical cross bridge cycle in cardiac muscle

Kristina Kooiker et al.Feb 3, 2023
Modulating myosin function is a novel therapeutic approach in patients with cardiomyopathy. Detailed mechanism of action of these agents can help predict potential unwanted affects and identify patient populations that can benefit most from them. Danicamtiv is a novel myosin activator with promising preclinical data that is currently in clinical trials. While it is known danicamtiv increases force and cardiomyocyte contractility without affecting calcium levels, detailed mechanistic studies regarding its mode of action are lacking. Using porcine cardiac tissue and myofibrils we demonstrate that Danicamtiv increases force and calcium sensitivity via increasing the number of myosin in the "on" state and slowing cross bridge turnover. Our detailed analysis shows that inhibition of ADP release results in decreased cross bridge turnover with cross bridges staying on longer and prolonging myofibril relaxation. Using a mouse model of genetic dilated cardiomyopathy, we demonstrated that Danicamtiv corrected calcium sensitivity in demembranated and abnormal twitch magnitude and kinetics in intact cardiac tissue.Directly augmenting sarcomere function has potential to overcome limitations of currently used inotropic agents to improve cardiac contractility. Myosin modulation is a novel mechanism for increased contraction in cardiomyopathies. Danicamtiv is a myosin activator that is currently under investigation for use in cardiomyopathy patients. Our study is the first detailed mechanism of how Danicamtiv increases force and alters kinetics of cardiac activation and relaxation. This new understanding of the mechanism of action of Danicamtiv can be used to help identify patients that could benefit most from this treatment.
6
Citation5
0
Save
1

Correcting dilated cardiomyopathy with fibroblast-targeted p38 deficiency

Ross Bretherton et al.Jan 23, 2023
Inherited mutations in contractile and structural genes, which decrease cardiomyocyte tension generation, are principal drivers of dilated cardiomyopathy (DCM)- the leading cause of heart failure 1,2 . Progress towards developing precision therapeutics for and defining the underlying determinants of DCM has been cardiomyocyte centric with negligible attention directed towards fibroblasts despite their role in regulating the best predictor of DCM severity, cardiac fibrosis 3,4 . Given that failure to reverse fibrosis is a major limitation of both standard of care and first in class precision therapeutics for DCM, this study examined whether cardiac fibroblast-mediated regulation of the heart's material properties is essential for the DCM phenotype. Here we report in a mouse model of inherited DCM that prior to the onset of fibrosis and dilated myocardial remodeling both the myocardium and extracellular matrix (ECM) stiffen from switches in titin isoform expression, enhanced collagen fiber alignment, and expansion of the cardiac fibroblast population, which we blocked by genetically suppressing p38α in cardiac fibroblasts. This fibroblast-targeted intervention unexpectedly improved the primary cardiomyocyte defect in contractile function and reversed ECM and dilated myocardial remodeling. Together these findings challenge the long-standing paradigm that ECM remodeling is a secondary complication to inherited defects in cardiomyocyte contractile function and instead demonstrate cardiac fibroblasts are essential contributors to the DCM phenotype, thus suggesting DCM-specific therapeutics will require fibroblast-specific strategies.
1
Citation2
0
Save
0

Mechanisms of a novel regulatory light chain–dependent cardiac myosin inhibitor

Kristina Kooiker et al.Jul 31, 2024
Hypertrophic cardiomyopathy (HCM) is a genetic disease of the heart characterized by thickening of the left ventricle (LV), hypercontractility, and impaired relaxation. HCM is caused primarily by heritable mutations in sarcomeric proteins, such as β myosin heavy chain. Until recently, medications in clinical use for HCM did not directly target the underlying contractile changes in the sarcomere. Here, we investigate a novel small molecule, RLC-1, identified in a bovine cardiac myofibril high-throughput screen. RLC-1 is highly dependent on the presence of a regulatory light chain to bind to cardiac myosin and modulate its ATPase activity. In demembranated rat LV trabeculae, RLC-1 decreased maximal Ca2+-activated force and Ca2+ sensitivity of force, while it increased the submaximal rate constant for tension redevelopment. In myofibrils isolated from rat LV, both maximal and submaximal Ca2+-activated force are reduced by nearly 50%. Additionally, the fast and slow phases of relaxation were approximately twice as fast as DMSO controls, and the duration of the slow phase was shorter. Structurally, x-ray diffraction studies showed that RLC-1 moved myosin heads away from the thick filament backbone and decreased the order of myosin heads, which is different from other myosin inhibitors. In intact trabeculae and isolated cardiomyocytes, RLC-1 treatment resulted in decreased peak twitch magnitude and faster activation and relaxation kinetics. In conclusion, RLC-1 accelerated kinetics and decreased force production in the demembranated tissue, intact tissue, and intact whole cells, resulting in a smaller cardiac twitch, which could improve the underlying contractile changes associated with HCM.
0
Citation1
0
Save
0

13C Stable Isotope Tracing Reveals Distinct Fatty Acid Oxidation Pathways in Proliferative vs. Oxidative Cells

Julia Ritterhoff et al.Nov 29, 2024
The TCA cycle serves as a central hub to balance catabolic and anabolic needs of the cell, where carbon moieties can either contribute to oxidative metabolism or support biosynthetic reactions. This differential TCA cycle engagement for glucose-derived carbon has been extensively studied in cultured cells, but the fate of fatty acid (FA)-derived carbons is poorly understood. To fill the knowledge gap, we have developed a strategy to culture cells with long-chain FAs without altering cell viability. By tracing 13 C-FA we show that FA oxidation (FAO) is robust in both proliferating and oxidative cells while the metabolic pathway after citrate formation is distinct. In proliferating cells, a significant portion of carbon derived from FAO exits canonical TCA cycle as citrate and converts to unlabeled malate in cytosol. Increasing FA supply or b-oxidation does not change the partition of FA-derived carbon between cytosol and mitochondria. Oxidation of glucose competes with FA derived carbon for the canonical TCA pathway thus promoting FA carbon flowing into the alternative TCA pathway. Moreover, the coupling between FAO and the canonical TCA pathway changes with the state of oxidative energy metabolism.