TB
Tjeerd Boonstra
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
14
(50% Open Access)
Cited by:
11
h-index:
33
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The effects of long-term exercise training on the neural control of walking

Morteza Yaserifar et al.Jan 21, 2021
Abstract How does long-term training modify the neural control of walking? Here we investigate changes in kinematics and muscle synergies of the lower extremities in 10 soccer players and 10 non-athletes while they walked with eyes open or closed either overground or on a treadmill. Electromyography (EMG) was acquired from eight muscles of the right leg and foot switch data were recorded to extract temporal gait parameters. Muscle synergies were extracted using non-negative matrix factorisation for each participant and condition separately and were then grouped using k-means clustering. We found that both the cycle and stance duration were longer during treadmill walking compared to overground walking, whereas the swing phase was longer during the eyes-open compare to the eyes-closed condition. On average, more synergies were expressed in the athlete compared to the non-athlete group and during treadmill compared to overground walking. We found that synergy 2 involved in ankle plantarflexion was more often activated in athletes than in non-athletes. We did not find statistical group differences for the synergy metrics but several differences were observed between conditions: peak activation of synergy 5 (VM and VL muscles) increased during overground walking compared to treadmill walking. In addition, reduced activation of synergy 3 (TA muscle) and synergy 4 was observed during eyes-closed compared to eyes-open walking. These findings suggest that during walking long-term training results in greater flexibility of muscle coordination by recruiting additional synergies, but we found no evidence that long-term training affects the activation patterns of these synergies.
9

Assessing neuromodulation effects of theta burst stimulation to the prefrontal cortex using TMS-evoked potentials

Adriano Moffa et al.Jun 22, 2021
Abstract Theta burst stimulation (TBS), a form of repetitive transcranial magnetic stimulation (TMS), is capable of non-invasively modulating cortical excitability. TBS is gaining popularity as a therapeutic tool for psychiatric disorders such as depression, in which the dorsolateral prefrontal cortex (DLPFC) is the main therapeutic target. However, the neuromodulatory effects of TBS on prefrontal regions remain unclear. An emerging tool to assess neuromodulation in non-motor regions is concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) to measure TMS-evoked potentials (TEPs). We assessed twenty-four healthy participants (13 males, mean age 25.2±9.9 years) following intermittent TBS, continuous TBS, and sham applied to the left DLPFC using a double-blinded crossover design. TEPs were obtained at baseline and 2-, 15-, and 30-min post-stimulation. Four TEP components (N40, P60, N100 and P200) were analysed using mixed effects repeated measures models (MRMM). Results indicate no significant effects for any assessed components (all p>.05). The largest effect size (Cohen’s d = −0.5) comparing iTBS and sham was obtained for the N100 component at 15 minutes post-stimulation. This result was in the same direction but smaller than found in previous studies, suggesting that the true effect size may be lower than previously reported. Accurate estimates of the effects sizes and inter-individual heterogeneity will critically inform clinical applications using TEPs to assess the neuromodulatory effects of TBS.
2

The coordination of hip, knee and ankle joint angles during gait in soccer players and controls

Morteza Yaserifar et al.Sep 24, 2021
Abstract Background Clinical researchers are trying to unravel the impact of different training interventions on the kinematics of human gait. However, the effects of long-term training experience on the kinematics of a healthy gait pattern remains unclear. Here we assess the effect of long-term training experience on joint angle variability during walking. Methods Hip, knee, and ankle joint angles from fourteen soccer players and sixteen controls were acquired during treadmill and overground walking. Hip-knee coupling, knee-ankle coupling and coupling angle variability (CAV) of the right leg in the sagittal plane were assessed using a vector coding technique. Results Soccer players showed reduced hip-knee CAV during the mid-stance and terminal-stance phases and reduced knee-ankle CAV during the pre-swing phase of gait compared to the control group. In addition, soccer players less often used an ankle coordination pattern, in which only the ankle joint but not the knee joint rotates. Interpretation These findings show that soccer players had more stability in the ankle joint during the stance phase of the gait compared to the control group. Future studies can test whether these differences in the coordination of the ankle joint reflect the effects of long-term training on normal gait by comparing knee-ankle coupling and variability before and after exercise training interventions.
2
Paper
Citation1
0
Save
0

Assessing neurophysiological changes associated with combined transcranial direct current stimulation and cognitive emotional training for treatment-resistant depression

Stevan Nikolin et al.Jul 5, 2019
Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, is a promising treatment for depression. Recent research suggests that tDCS efficacy can be augmented using concurrent cognitive emotional training (CET). However, the neurophysiological changes associated with this combined intervention remain to be elucidated. We therefore examined the effects of tDCS combined with CET using electroencephalography (EEG). A total of 20 participants with treatment resistant depression took part in this open-label study and received 18 sessions over 6 weeks of tDCS and concurrent CET. Resting-state and task-related EEG during a 3-back working memory task were aquired at baseline and immediately following the treatment course. Results showed an improvement in mood and working memory accuracy, but not response time, following the intervention. We did not find significant effects of the intervention on resting-state power spectral density (frontal theta and alpha asymmetry), time-frequency power (alpha event-related desynchronization and theta event-related synchronisation), or event-related potentials (P2 and P3 components). We therefore identified little evidence of neurophysiological changes associated with treatment using tDCS and concurrent CET, despite significant improvements in mood and near transfer effects of cognitive training to working memory accuracy. Further research incorporating a sham controlled group may be necessary to identify the neurophysiological effects of the intervention.* CET : cognitive emotional training DLPFC : dorsolateral prefrontal cortex EEG : elecetroencephalography EFMT : emotional faces memory task ERD : event related desynchronization ERP : event related potential ERS : event related synchronisation ICA : independent component analysis MADRS : Montgomery-Asperg depression rating scale MDD : major depressive disorder PSD : power spectral density RT : response time tDCS : transcranial direct current stimulation TOST : two one-sided t -test
1

Reliability of transcranial magnetic stimulation evoked potentials to detect the effects of theta-burst stimulation of the prefrontal cortex

Adriano Moffa et al.Dec 13, 2021
Abstract Background Transcranial magnetic stimulation (TMS) with simultaneous electroencephalography (EEG) is a novel method for assessing cortical properties outside the motor region. Theta burst stimulation (TBS), a form of repetitive TMS, can non-invasively modulate cortical excitability and has been increasingly used to treat psychiatric disorders by targetting the dorsolateral prefrontal cortex (DLPFC). The TMS-evoked potentials (TEPs) analysis has been used to evaluate cortical excitability changes after TBS. However, it remains unclear whether TEPs can detect the neuromodulatory effects of TBS. Objectives To confirm the reliability of TEP components within and between sessions and to measure changes in neural excitability induced by intermittent (iTBS) and continuous TBS (cTBS) applied to the left DLPFC. Methods Test-retest reliability of TEPs and TBS-induced changes in cortical excitability were assessed in twenty-four healthy participants by stimulating the DLPFC in five separate sessions, once with sham and twice with iTBS and cTBS. EEG responses were recorded of 100 single TMS pulses before and after TBS, and the reproducibility measures were quantified with the concordance correlation coefficient (CCC). Results The N100 and P200 components presented substantial reliability within the baseline block (CCCs>0.8) and moderate concordance between sessions (CCC max ≈0.7). Both N40 and P60 TEP amplitudes showed little concordance between sessions. Changes in TEP amplitudes after iTBS were marginally reliable for N100 (CCC max =0.52), P200 (CCC max =0.47) and P60 (CCC max =0.40), presenting only fair levels of concordance at specific time points. Conclusions The present findings show that only the N100 and P200 components had good concordance between sessions. The reliability of earlier components may have been affected by TMS-evoked artefacts. The poor reliability to detect changes in neural excitability induced by TBS indicates that TEPs do not provide a precise estimate of the changes in excitability in the DLPFC or, alternatively, that TBS did not induce consistent changes in neural excitability.
0

Information decomposition of multichannel EMG to map functional interactions in the distributed motor system

Tjeerd Boonstra et al.Mar 25, 2019
The central nervous system needs to coordinate multiple muscles during postural control. Functional coordination is established through the neural circuitry that interconnects different muscles. Here we used multivariate information decomposition of multichannel EMG acquired from 14 healthy participants during postural tasks to investigate the neural interactions between muscles. A set of information measures were estimated from an instantaneous linear regression model and a time-lagged VAR model fitted to the EMG envelopes of 36 muscles. We used network analysis to quantify the structure of functional interactions between muscles and compared them across experimental conditions. Conditional mutual information and transfer entropy revealed sparse networks dominated by local connections between muscles. We observed significant changes in muscle networks across postural tasks localized to the muscles involved in performing those tasks. Information decomposition revealed distinct patterns in task-related changes: unimanual and bimanual pointing were associated with reduced transfer to the pectoralis major muscles, but an increase in total information compared to no pointing, while postural instability resulted in increased information, information transfer and information storage in the abductor longus muscles compared to normal stability. These findings show robust patterns of directed interactions between muscles that are task-dependent and can be assessed from surface EMG recorded during static postural tasks. We discuss directed muscle networks in terms of the neural circuitry involved in generating muscle activity and suggest that task-related effects may reflect gain modulations of spinal reflex pathways.
1

Dynamics of brain-muscle networks reveal effects of age and somatosensory function on gait

Luisa Roeder et al.Feb 3, 2023
Abstract Walking is a complex motor activity that requires coordinated interactions between sensory and motor systems. We used mobile EEG and EMG to investigate the brain-muscle networks involved in gait control during overground walking in young, older and individuals with Parkinson’s Disease. Dynamic interactions between the sensorimotor cortices and eight leg muscles within a gait cycle were assessed using multivariate analysis. We identified three distinct brain-muscle networks during a gait cycle. These networks include a bilateral network, a left-lateralised network activated during the left swing phase, and a right-lateralised network active during right swing. The trajectories of these networks are contracted in older adults, indicating a reduction in neuromuscular connectivity with age. Individuals with impaired tactile sensitivity of the foot showed a selective enhancement of the bilateral network, possibly reflecting a compensation strategy to maintain gait stability. These findings provide a parsimonious description of interindividual differences in neuromuscular connectivity during gait. Teaser Dynamic network analysis shows how brain-muscle connectivity during gait varies with age and somatosensory function.
0

Corticomuscular control of walking in older people and people with Parkinson’s disease

Luisa Roeder et al.May 5, 2019
Changes in human gait that result from ageing or neurodegenerative diseases are multifactorial. Here we assess the effects of age and Parkinson’s disease (PD) on corticospinal control in electrophysiological activity recorded during treadmill and overground walking. Electroencephalography (EEG) from 10 electrodes and electromyography (EMG) from two leg muscles were acquired from 22 healthy young, 24 healthy older and 20 adults with PD. Event-related power, corticomuscular coherence (CMC) and inter-trial coherence were assessed for EEG from bilateral sensorimotor cortices and EMG from tibialis anterior muscles during the double support phase of the gait cycle. CMC and EMG power in the low beta band (13-21 Hz) was significantly decreased in older and PD participants compared to young people, but there was no difference between older and PD groups. Older and PD participants spent shorter time in the swing phase than young individuals. These findings indicate age-related changes in the temporal coordination of gait. The decrease in beta CMC suggests reduced cortical input to spinal motor neurons in older people during the double support phase. We also observed multiple changes in electrophysiological measures at high beta and low gamma frequencies during treadmill compared to overground walking, indicating task-dependent differences in corticospinal locomotor control.
2

The effects of conscious movement processing on the neuromuscular control of posture

Li-Juan Jie et al.Jun 23, 2022
Abstract Maintaining balance is thought to primarily occur sub-consciously. Occasionally, however, individuals will direct conscious attention towards balance, e.g., in response to a threat to balance. Such conscious movement processing (CMP) increases the reliance on attentional resources and may disrupt balance performance. However, the underlying changes in neuromuscular control remain poorly understood. We investigated the effects of CMP (manipulated using verbal instructions) on neural control of posture in twenty-five adults (11 females, mean age = 23.9, range = 18–33). Participants performed 90-second, bipedal stance balance trials in high- and low-CMP conditions, during both stable (solid surface) and unstable (foam) task conditions. Postural sway amplitude, frequency and complexity were used to assess postural control. Surface EMG was recorded bilaterally from lower leg muscles (Soleus, Tibialis Anterior, Gastrocnemius Medialis, Peroneus Longus) and intermuscular coherence (IMC) was assessed for 12 muscle pairs across four frequency bands. We observed significantly increased sway amplitude, and decreased sway frequency and complexity in the high- compared to the low-CMP conditions. All sway variables increased in the unstable compared to the stable conditions. We observed reduced beta band IMC between several muscle pairs during high- compared to low-CMP, but these findings did not remain significant after controlling for multiple comparisons. Finally, IMC significantly increased in the unstable conditions for most muscle combinations and frequency bands. In all, results tentatively suggest that CMP-induced changes in sway outcomes may be facilitated by reduced beta-band IMC, but these findings need to be replicated before they can be interpreted more conclusively.
0

Effects of tDCS Dosage on Working Memory in Healthy Participants

Stevan Nikolin et al.Sep 22, 2017
Background: Transcranial direct current stimulation (tDCS) has been found to improve working memory (WM) performance in healthy participants following a single session. However, results are mixed and the overall effect size is small. Interpretation of these results is confounded by heterogeneous study designs, including differences in tDCS dose (current intensity) and sham conditions used. Aims: We systematically investigated the effect of tDCS dose on working memory using behavioural and neurophysiological outcomes. Methods: In a single-blind parallel group design, 100 participants were randomised across five groups to receive 15 minutes of bifrontal tDCS at different current intensities (2mA, 1mA, and three sham tDCS conditions at 0.034mA, 0.016mA, or 0mA). EEG activity was acquired while participants performed a WM task prior to, during, and following tDCS. Response time, accuracy and an event-related EEG component (P3) were evaluated. Results: We found no significant differences in response time or performance accuracy between current intensities. The P3 amplitude was significantly lower in the 0mA condition compared to the 0.034mA, 1mA and 2mA tDCS conditions. Changes in WM accuracy were moderately correlated with changes in the P3 amplitude following tDCS compared to baseline levels (r = 0.34). Conclusions: Working memory was not significantly altered by tDCS, regardless of dose. The P3 amplitude showed that stimulation at 1mA, 2mA and a sham condition (0.034mA) had biological effects, with the largest effect size for 1mA stimulation. These findings indicate higher sensitivity of neurophysiological outcomes to tDCS and suggests that sham stimulation previously considered inactive may alter neuronal function.
Load More