1 Abstract A trade-off between growth and fecundity, reflecting the inability of simultaneously investing in both functions when resources are limited, is a fundamental feature of life history theory. This particular trade-off is the result of evolutionary and environmental constrains shaping reproductive and growth traits, but it remains difficult to pinpoint in natural populations of long-lived plants. We developed a hierarchical Bayesian model to estimate the inter-individual correlation among growth and reproduction, using observations at individual level over several years combined with resource simulations from an ecophysiological-based model (CASTANEA). In the Bayesian model, the resource, simulated by CASTANEA and incorporated as a latent variable, is allocated to tree growth, reproductive buds initiation and fruit maturation. Then, we used individual random effects correlated among energetic sinks to investigate potential trade-offs. We applied this original approach to a Mediterranean coniferous tree, Atlas Cedar ( Cedrus atlantica ), at two contrasted levels of competition, high versus low density population. We found that trees initializing many reproductive buds had a higher growth. Moreover, a negative correlation was detected between growth and fruit survival during maturation. Finally, trees investing more resource to maturate fruits initiated less reproductive buds. The level of competition did not impact the sign of these three correlations, but changed the level of resource allocation: low density population favored growth whereas high density favored reproduction. The level of resource have an impact on individual strategies. This new modeling framework allowed us to detect various individual strategies of resource allocation to growth versus late-stage reproduction on the one hand, and to early-versus late-stage reproduction on the other hand. Moreover, the sign of the correlation between growth and reproductive traits depends on the stage of reproduction considered. Hence, we suggest that the investigation of potential trade-offs between growth and reproduction requires to integrate the dynamics of resource and sink’s phenology, from initiation to maturation of reproductive organs.