IB
Ilia Baskakov
Author with expertise in Prion Diseases: Causes and Molecular Basis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(78% Open Access)
Cited by:
1,937
h-index:
49
/
i10-index:
121
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Pathway Complexity of Prion Protein Assembly into Amyloid

Ilia Baskakov et al.Jun 1, 2002
In vivo under pathological conditions, the normal cellular form of the prion protein, PrP(C) (residues 23-231), misfolds to the pathogenic isoform PrP(Sc), a beta-rich aggregated pathogenic multimer. Proteinase K digestion of PrP(Sc) leads to a proteolytically resistant core, PrP 27-30 (residues 90-231), that can form amyloid fibrils. To study the kinetic pathways of amyloid formation in vitro, we used unglycosylated recombinant PrP corresponding to the proteinase K-resistant core of PrP(Sc) and found that it can adopt two non-native abnormal isoforms, a beta-oligomer and an amyloid fibril. Several lines of kinetic data suggest that the beta-oligomer is not on the pathway to amyloid formation. The preferences for forming either a beta-oligomer or amyloid can be dictated by experimental conditions, with acidic pH similar to that seen in endocytic vesicles favoring the beta-oligomer and neutral pH favoring amyloid. Although both abnormal isoforms have high beta-sheet content and bind 1-anilinonaphthalene-8-sulfonate, they are dissimilar structurally. Multiple pathways of misfolding and the formation of distinct beta-sheet-rich abnormal isoforms may explain the difficulties in refolding PrP(Sc) in vitro, the need for a PrP(Sc) template, and the significant variation in disease presentation and neuropathology.
0

Recombinant prion protein induces a new transmissible prion disease in wild-type animals

Natallia Makarava et al.Jan 5, 2010
Prion disease is a neurodegenerative malady, which is believed to be transmitted via a prion protein in its abnormal conformation (PrP(Sc)). Previous studies have failed to demonstrate that prion disease could be induced in wild-type animals using recombinant prion protein (rPrP) produced in Escherichia coli. Here, we report that prion infectivity was generated in Syrian hamsters after inoculating full-length rPrP that had been converted into the cross-beta-sheet amyloid form and subjected to annealing. Serial transmission gave rise to a disease phenotype with highly unique clinical and neuropathological features. Among them were the deposition of large PrP(Sc) plaques in subpial and subependymal areas in brain and spinal cord, very minor lesioning of the hippocampus and cerebellum, and a very slow progression of disease after onset of clinical signs despite the accumulation of large amounts of PrP(Sc) in the brain. The length of the clinical duration is more typical of human and large animal prion diseases, than those of rodents. Our studies establish that transmissible prion disease can be induced in wild-type animals by inoculation of rPrP and introduce a valuable new model of prion diseases.
0

Light-Dependent Electrogenic Activity of Cyanobacteria

John Pisciotta et al.May 25, 2010
Background Cyanobacteria account for 20–30% of Earth's primary photosynthetic productivity and convert solar energy into biomass-stored chemical energy at the rate of ∼450 TW [1]. These single-cell microorganisms are resilient predecessors of all higher oxygenic phototrophs and can be found in self-sustaining, nitrogen-fixing communities the world over, from Antarctic glaciers to the Sahara desert [2]. Methodology/Principal Findings Here we show that diverse genera of cyanobacteria including biofilm-forming and pelagic strains have a conserved light-dependent electrogenic activity, i.e. the ability to transfer electrons to their surroundings in response to illumination. Naturally-growing biofilm-forming photosynthetic consortia also displayed light-dependent electrogenic activity, demonstrating that this phenomenon is not limited to individual cultures. Treatment with site-specific inhibitors revealed the electrons originate at the photosynthetic electron transfer chain (P-ETC). Moreover, electrogenic activity was observed upon illumination only with blue or red but not green light confirming that P-ETC is the source of electrons. The yield of electrons harvested by extracellular electron acceptor to photons available for photosynthesis ranged from 0.05% to 0.3%, although the efficiency of electron harvesting likely varies depending on terminal electron acceptor. Conclusions/Significance The current study illustrates that cyanobacterial electrogenic activity is an important microbiological conduit of solar energy into the biosphere. The mechanism responsible for electrogenic activity in cyanobacteria appears to be fundamentally different from the one exploited in previously discovered electrogenic bacteria, such as Geobacter, where electrons are derived from oxidation of organic compounds and transported via a respiratory electron transfer chain (R-ETC) [3], [4]. The electrogenic pathway of cyanobacteria might be exploited to develop light-sensitive devices or future technologies that convert solar energy into limited amounts of electricity in a self-sustainable, CO2-free manner.
0
Citation247
0
Save
0

Engulfment of viable neurons by reactive microglia in prion diseases

Natallia Makarava et al.Mar 9, 2024
Abstract Microglia are recognized as the main cells in the central nervous system responsible for phagocytosis. During brain development, microglia eliminate excessive synapses and neurons, whereas in normal aging and neurodegenerative diseases, microglia are responsible for clearing protein aggregates and cell debris. The current study demonstrates that in prion disease, microglia effectively phagocytose prions or PrP Sc during early preclinical stages. However, during the late preclinical stage, a critical shift occurs in microglial activity from PrP Sc uptake to the engulfment of neurons. This change occurs before the manifestation of clinical symptoms and is followed by a rapid accumulation of total PrP Sc , suggesting a potential link to neuronal dysfunction and behavioral deficits. Surprisingly, the engulfed neurons do not show apoptotic markers, indicating that microglia are targeting viable neurons. Despite up to 40% of neurons being partially engulfed at the clinical stage, there is no significant neuronal loss, suggesting that many engulfment events are incomplete, terminated or protracted. This phenomenon of partial engulfment by reactive microglia is independent of the CD11b pathway, previously associated with phagocytosis of newborn neurons during neurodevelopment. The study establishes partial engulfment as a consistent occurrence across multiple prion-affected brain regions, various mouse-adapted strains, and different subtypes of sporadic Creutzfeldt-Jakob disease (sCJD) in humans. The current work describes a new phenomenon of partial engulfment of neurons by reactive microglia, shedding light on a novel aspect of neuronal-microglia interactions.
0
Citation1
0
Save
5

Reactive astrocytes associated with prion disease impair the blood brain barrier

Rajesh Kushwaha et al.Mar 25, 2023
Impairment of the blood-brain barrier (BBB) is considered to be a common feature among neurodegenerative diseases, including Alzheimer's, Parkinson's and prion diseases. In prion disease, increased BBB permeability was reported 40 years ago, yet the mechanisms behind the loss of BBB integrity have never been explored. Recently, we showed that reactive astrocytes associated with prion diseases are neurotoxic. The current work examines the potential link between astrocyte reactivity and BBB breakdown.In prion-infected mice, the loss of BBB integrity and aberrant localization of aquaporin 4 (AQP4), a sign of retraction of astrocytic endfeet from blood vessels, were noticeable prior to disease onset. Gaps in cell-to-cell junctions along blood vessels, together with downregulation of Occludin, Claudin-5 and VE-cadherin, which constitute tight and adherens junctions, suggested that loss of BBB integrity is linked with degeneration of vascular endothelial cells. In contrast to cells isolated from non-infected adult mice, endothelial cells originating from prion-infected mice displayed disease-associated changes, including lower levels of Occludin, Claudin-5 and VE-cadherin expression, impaired tight and adherens junctions, and reduced trans-endothelial electrical resistance (TEER). Endothelial cells isolated from non-infected mice, when co-cultured with reactive astrocytes isolated from prion-infected animals or treated with media conditioned by the reactive astrocytes, developed the disease-associated phenotype observed in the endothelial cells from prion-infected mice. Reactive astrocytes were found to produce high levels of secreted IL-6, and treatment of endothelial monolayers originating from non-infected animals with recombinant IL-6 alone reduced their TEER. Remarkably, treatment with extracellular vesicles produced by normal astrocytes partially reversed the disease phenotype of endothelial cells isolated from prion-infected animals.To our knowledge, the current work is the first to illustrate early BBB breakdown in prion disease and to document that reactive astrocytes associated with prion disease are detrimental to BBB integrity. Moreover, our findings suggest that the harmful effects are linked to proinflammatory factors secreted by reactive astrocytes.
5
Citation1
0
Save
1

Region-specific homeostatic identity of astrocytes is essential for defining their reactive phenotypes following pathological insults

Natallia Makarava et al.Feb 7, 2023
Abstract The transformation of astrocytes into reactive states constitutes a biological response of the central nervous system under a variety of pathological insults. Astrocytes display diverse homeostatic identities, which are developmentally predetermined and regionally specified. Upon transformation into reactive states associated with neurodegenerative diseases and other neurological disorders, astrocytes acquire diverse reactive phenotypes. However, it is not clear whether their reactive phenotypes are dictated by regionspecific homeostatic identity or, alternatively, by the nature of an insult. To address this question, regionspecific gene expression profiling was performed for four brain regions (cortex, hippocampus, thalamus and hypothalamus) in mice using a custom Nanostring panel consisting of selected sets of genes that report on astrocyte functions and their reactivity for five conditions: prion disease, traumatic brain injury, brain ischemia, 5XFAD Alzheimer’s disease model and normal aging. Upon transformation into reactive states, genes that are associated predominantly with astrocytes were found to preserve region-specific signatures suggesting that they respond to insults in a region-specific manner. A common gene set was found to be involved in astrocyte remodeling across insults and normal aging. Regardless of the nature of an insult or insult-specificity of astrocyte response, strong correlations between the degree of astrocyte reactivity and perturbations in their homeostasis-associated genes were observed within each individual brain region. The insult-specific populations did not separate well from each other and instead partially overlapped, forming continuums of phenotypes. The current study demonstrates that astrocytes acquire their reactive phenotypes according to their region-specific homeostatic identities. Within these region-specified identities, reactive phenotypes show continuums of states, partially overlapping between individual insults.
0

Loss of region-specific glial homeostatic signature in prion diseases

Natallia Makarava et al.Oct 30, 2019
Background. Chronic neuroinflammation is recognized as a major neuropathological hallmark in a broad spectrum of neurodegenerative diseases including Alzheimer, Parkinson, Frontal Temporal Dementia, Amyotrophic Lateral Sclerosis, and prion diseases. Both microglia and astrocytes exhibit region-specific homeostatic transcriptional identities, which under chronic neurodegeneration, transform into reactive phenotypes in a region- and disease-specific manner. Little is known about region-specific identity of glia in prion diseases. The current study was designed to determine whether the region-specific homeostatic signature of glia changes with the progression of prion diseases, and whether these changes occur in a region-dependent or universal manner. Also of interest was whether different prion strains give rise to different reactive phenotypes. Methods. To answer these questions, we analyzed gene expression in thalamus, cortex, hypothalamus and hippocampus of mice infected with 22L and ME7 prion strains using Nanostring Neuroinflammation panel at subclinical, early clinical and advanced stages of the disease. Results. We found that at the preclinical stage of the disease, region-specific homeostatic identities were preserved. However, with the appearance of clinical signs, region-specific signatures were partially lost and replaced with a neuroinflammation signature. While the same sets of genes were activated by both prion strains, the timing of neuroinflammation and the degree of activation in different brain regions was strain-specific. Changes in astrocyte function scored at the top of activated pathways. Moreover, clustering analysis suggested that the astrocyte function pathway responded to prion infection prior to activated microglia or neuron and neurotransmission pathways. Conclusions. The current work established neuroinflammation gene expression signature associated with prion diseases. Our results illustrate that with the disease progression, the region-specific homeostatic transcriptome signatures are replaced by region-independent neuroinflammation signature, which was common for prion strains with different cell tropism. The prion-associated neuroinflammation signature identified in the current study overlapped only partially with the microglia degenerative phenotype and the disease-associated microglia phenotype reported for animal models of other neurodegenerative diseases.