JM
Jessica Mory
Author with expertise in Regulation of RNA Processing and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
8
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
30

Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis

Nil Aygün et al.Sep 1, 2023
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk post-mortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA-editing and alternative polyadenylation (APA), within a cell-type-specific population of human neural progenitors and neurons. More RNA-editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting genetically mediated post-transcriptional regulation during brain development lead to differences in brain function.
0

Genetics of cell-type-specific post-transcriptional gene regulation during human neurogenesis

Nil Aygün et al.Aug 1, 2024
The function of some genetic variants associated with brain-relevant traits has been explained through colocalization with expression quantitative trait loci (eQTL) conducted in bulk postmortem adult brain tissue. However, many brain-trait associated loci have unknown cellular or molecular function. These genetic variants may exert context-specific function on different molecular phenotypes including post-transcriptional changes. Here, we identified genetic regulation of RNA editing and alternative polyadenylation (APA) within a cell-type-specific population of human neural progenitors and neurons. More RNA editing and isoforms utilizing longer polyadenylation sequences were observed in neurons, likely due to higher expression of genes encoding the proteins mediating these post-transcriptional events. We also detected hundreds of cell-type-specific editing quantitative trait loci (edQTLs) and alternative polyadenylation QTLs (apaQTLs). We found colocalizations of a neuron edQTL in CCDC88A with educational attainment and a progenitor apaQTL in EP300 with schizophrenia, suggesting that genetically mediated post-transcriptional regulation during brain development leads to differences in brain function.
1

Segmentor: A tool for manual refinement of 3D microscopy annotations

David Borland et al.Jan 27, 2021
Abstract Background Recent advances in tissue clearing techniques, combined with high-speed image acquisition through light sheet microscopy, enable rapid three-dimensional (3D) imaging of biological specimens, such as whole mouse brains, in a matter of hours. Quantitative analysis of such 3D images can help us understand how changes in brain structure lead to differences in behavior or cognition, but distinguishing features of interest, such as nuclei, from background can be challenging. Recent deep learning-based nuclear segmentation algorithms show great promise for automated segmentation, but require large numbers of manually and accurately labeled nuclei as training data. Results We present Segmentor, an open-source tool for reliable, efficient, and user-friendly manual annotation and refinement of objects (e.g., nuclei) within 3D light sheet microscopy images. Segmentor employs a hybrid 2D-3D approach for visualizing and segmenting objects and contains features for automatic region splitting, designed specifically for streamlining the process of 3D segmentation of nuclei. We show that editing simultaneously in 2D and 3D using Segmentor significantly decreases time spent on manual annotations without affecting accuracy. Conclusions Segmentor is a tool for increased efficiency of manual annotation and refinement of 3D objects that can be used to train deep learning segmentation algorithms, and is available at https://www.nucleininja.org/ and https://github.com/RENCI/Segmentor .