KB
K. Broadaway
Author with expertise in Genomic Studies and Association Analyses
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(50% Open Access)
Cited by:
2
h-index:
13
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Adipose tissue eQTL meta-analysis reveals the contribution of allelic heterogeneity to gene expression regulation and cardiometabolic traits

Sarah Brotman et al.Oct 27, 2023
Abstract Complete characterization of the genetic effects on gene expression is needed to elucidate tissue biology and the etiology of complex traits. Here, we analyzed 2,344 subcutaneous adipose tissue samples and identified 34K conditionally distinct expression quantitative trait locus (eQTL) signals in 18K genes. Over half of eQTL genes exhibited at least two eQTL signals. Compared to primary signals, non-primary signals had lower effect sizes, lower minor allele frequencies, and less promoter enrichment; they corresponded to genes with higher heritability and higher tolerance for loss of function. Colocalization of eQTL with conditionally distinct genome-wide association study signals for 28 cardiometabolic traits identified 3,605 eQTL signals for 1,861 genes. Inclusion of non-primary eQTL signals increased colocalized signals by 46%. Among 30 genes with ≥2 pairs of colocalized signals, 21 showed a mediating gene dosage effect on the trait. Thus, expanded eQTL identification reveals more mechanisms underlying complex traits and improves understanding of the complexity of gene expression regulation.
0
Citation2
0
Save
0

Powerful and Efficient Strategies for Genetic Association Testing of Symptom and Questionnaire Data in Psychiatric Genetic Studies

Aaron Holleman et al.Aug 2, 2018
Genetic studies of psychiatric disorders often deal with phenotypes that are not directly measurable. Instead, researchers rely on multivariate symptom data from questionnaires and surveys like the PTSD Symptom Scale (PSS) and Beck Depression Inventory (BDI) to indirectly assess a latent phenotype of interest. Researchers subsequently collapse such multivariate questionnaire data into a univariate outcome to represent a surrogate for the latent phenotype. However, when a causal variant is only associated with a subset of collapsed symptoms, the effect will be challenging to detect using the univariate outcome. We describe a more powerful strategy for genetic association testing in this situation that jointly analyzes the original multivariate symptom data collectively using a statistical framework that compares similarity in multivariate symptom-scale data from questionnaires to similarity in common genetic variants across a gene. We use simulated data to demonstrate this strategy provides substantially increased power over standard approaches that collapse questionnaire data into a single surrogate outcome. We also illustrate our approach using GWAS data from the Grady Trauma Project and identify genes associated with BDI not identified using standard univariate techniques. The approach is computationally efficient, scales to genome-wide studies, and is applicable to correlated symptom data of arbitrary dimension (thereby aligning with National Institute of Mental Health's Research Domain Criteria).