Transcriptional enhancers orchestrate cell-type-specific gene expression programs, but how they convey signal-activated transcriptional responses remains poorly understood. Here, the cell-lineage-specific transcription factor FoxA1 is shown to both facilitate and restrict the androgen receptor to act on distinct classes of enhancers. Lowered levels of FoxA1, such as those found in prostate cancer, can reprogram the hormonal response by causing a switch in androgen receptor binding to a set of pre-established, functional enhancers that are marked by enhancer-derived non-coding RNAs (eRNAs). This work points to the existence of a large repository of active enhancers that can be tuned to allow alternative gene expression programs in normal cell development and in disease progression. Mammalian genomes are populated with thousands of transcriptional enhancers that orchestrate cell-type-specific gene expression programs1,2,3,4, but how those enhancers are exploited to institute alternative, signal-dependent transcriptional responses remains poorly understood. Here we present evidence that cell-lineage-specific factors, such as FoxA1, can simultaneously facilitate and restrict key regulated transcription factors, exemplified by the androgen receptor (AR), to act on structurally and functionally distinct classes of enhancer. Consequently, FoxA1 downregulation, an unfavourable prognostic sign in certain advanced prostate tumours, triggers dramatic reprogramming of the hormonal response by causing a massive switch in AR binding to a distinct cohort of pre-established enhancers. These enhancers are functional, as evidenced by the production of enhancer-templated non-coding RNA (eRNA5) based on global nuclear run-on sequencing (GRO-seq) analysis6, with a unique class apparently requiring no nucleosome remodelling to induce specific enhancer–promoter looping and gene activation. GRO-seq data also suggest that liganded AR induces both transcription initiation and elongation. Together, these findings reveal a large repository of active enhancers that can be dynamically tuned to elicit alternative gene expression programs, which may underlie many sequential gene expression events in development, cell differentiation and disease progression.