ABSTRACT The control of body weight and glucose homeostasis are the bedrock of type 2 diabetes medication. Therapies based on co-administration of glucagon-like peptide-1 (GLP-1) long-acting analogues and insulin are becoming popular in the treatment of T2D. Both insulin and GLP-1 receptors (InsR and GLP1-R, respectively) are expressed in brain regions critically involved in the regulation of energy homeostasis, suggesting a possible cooperative action. However, the mechanisms underlying the synergistic action of insulin and GLP-1R agonists on body weight loss and glucose homeostasis remain largely under-investigated. In this study, we provide evidence that peripheral insulin administration modulates the action of GLP-1R agonists onto fatty acids oxidation. Taking advantage of fluorescently labeled insulin and GLP-1R agonists, we found that glucoprivic condition, either achieved by insulin or by 2-deoxyglucose (2-DG), acts as a permissive signal on the blood-brain barrier (BBB) at circumventricular organs, including the median eminence (ME) and the area postrema (AP), enhancing the passage and action of GLP-1-R agonists. Mechanistically, this phenomenon relied on the release of tanycyctic vascular endothelial growth factor A (VEGF-A) and it was selectively impaired after calorie-rich diet exposure. Finally, we found that in human subjects, low blood glucose also correlates with enhanced blood-to-brain passage of insulin suggesting that changes in glycaemia also affect passage of peptide hormones into the brain in humans. In conclusion, we describe a yet unappreciated mechanism by which acute variations of glycaemia gate the entry and action of circulating energy-related signals in the brain. This phenomenon has physiological and clinical relevance implying that glycemic control is critical to harnessing the full benefit of GLP-1R agonist co-treatment in body weight loss therapy.