TC
Tamoghna Chattopadhyay
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(92% Open Access)
Cited by:
10
h-index:
4
/
i10-index:
0
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
30

FiberNeat: Unsupervised White Matter Tract Filtering

Bramsh Chandio et al.Oct 28, 2021
Abstract Whole-brain tractograms generated from diffusion MRI digitally represent the white matter structure of the brain and are composed of millions of streamlines. Such tractograms can have false positive and anatomically implausible streamlines. To obtain anatomically relevant streamlines and tracts, supervised and unsupervised methods can be used for tractogram clustering and tract extraction. Here we propose FiberNeat, an unsupervised white matter tract filtering method. FiberNeat takes an input set of streamlines that could either be unlabeled clusters or labeled tracts. Individual clusters/tracts are projected into a latent space using nonlinear dimensionality reduction techniques, t-SNE and UMAP, to find spurious and outlier streamlines. In addition, outlier streamline clusters are detected using DBSCAN and then removed from the data in streamline space. We performed quantitative comparisons with expertly delineated tracts. We ran FiberNeat on 131 participants’ data from the ADNI3 dataset. We show that applying FiberNeat as a filtering step after bundle segmentation improves the quality of extracted tracts and helps improve tractometry.
12

Learning Optimal White Matter Tract Representations from Tractography using a Deep Generative Model for Population Analyses

Yixue Feng et al.Aug 2, 2022
ABSTRACT Whole brain tractography is commonly used to study the brain’s white matter fiber pathways, but the large number of streamlines generated - up to one million per brain - can be challenging for large-scale population studies. We propose a robust dimensionality reduction framework for tractography, using a Convolutional Variational Autoencoder (ConvVAE) to learn low-dimensional embeddings from white matter bundles. The resulting embeddings can be used to facilitate downstream tasks such as outlier and abnormality detection, and mapping of disease effects on white matter tracts in individuals or groups. We design experiments to evaluate how well embeddings of different dimensions preserve distances from the original high-dimensional dataset, using distance correlation methods. We find that streamline distances and inter-bundle distances are well preserved in the latent space, with a 6-dimensional optimal embedding space. The generative ConvVAE model allows fast inference on new data, and the smooth latent space enables meaningful decodings that can be used for downstream tasks. We demonstrate the use of a ConvVAE model trained on control subjects’ data to detect structural anomalies in white matter tracts in patients with Alzheimer’s disease (AD). Using ConvVAEs to facilitate population analyses, we identified 6 tracts with statistically significant differences between AD and controls after controlling for age and sex effect, visualizing specific locations along the tracts with high anomalies despite large inter-subject variations in fiber bundle geometry.
1
1

Comparison of Anatomical and Diffusion MRI for detecting Parkinson’s Disease using Deep Convolutional Neural Network

Tamoghna Chattopadhyay et al.May 1, 2023
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects over 10 million people worldwide. Brain atrophy and microstructural abnormalities tend to be more subtle in PD than in other age-related conditions such as Alzheimer's disease, so there is interest in how well machine learning methods can detect PD in radiological scans. Deep learning models based on convolutional neural networks (CNNs) can automatically distil diagnostically useful features from raw MRI scans, but most CNN-based deep learning models have only been tested on T1-weighted brain MRI. Here we examine the added value of diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive to microstructural tissue properties - as an additional input in CNN-based models for PD classification. Our evaluations used data from 3 separate cohorts - from Chang Gung University, the University of Pennsylvania, and the PPMI dataset. We trained CNNs on various combinations of these cohorts to find the best predictive model. Although tests on more diverse data are warranted, deep-learned models from dMRI show promise for PD classification.This study supports the use of diffusion-weighted images as an alternative to anatomical images for AI-based detection of Parkinson's disease.
1

The Influence of Brain MRI Defacing Algorithms on Brain-Age Predictions via 3D Convolutional Neural Networks

Ryan Cali et al.Apr 29, 2023
In brain imaging research, it is becoming standard practice to remove the face from the individual's 3D structural MRI scan to ensure data privacy standards are met. Face removal - or 'defacing' - is being advocated for large, multi-site studies where data is transferred across geographically diverse sites. Several methods have been developed to limit the loss of important brain data by accurately and precisely removing non-brain facial tissue. At the same time, deep learning methods such as convolutional neural networks (CNNs) are increasingly being used in medical imaging research for diagnostic classification and prognosis in neurological diseases. These neural networks train predictive models based on patterns in large numbers of images. Because of this, defacing scans could remove informative data. Here, we evaluated 4 popular defacing methods to identify the effects of defacing on 'brain age' prediction - a common benchmarking task of predicting a subject's chronological age from their 3D T1-weighted brain MRI. We compared brain-age calculations using defaced MRIs to those that were directly brain extracted, and those with both brain and face. Significant differences were present when comparing average per-subject error rates between algorithms in both the defaced brain data and the extracted facial tissue. Results also indicated brain age accuracy depends on defacing and the choice of algorithm. In a secondary analysis, we also examined how well comparable CNNs could predict chronological age from the facial region only (the extracted portion of the defaced image), as well as visualize areas of importance in facial tissue for predictive tasks using CNNs. We obtained better performance in age prediction when using the extracted face portion alone than images of the brain, suggesting the need for caution when defacing methods are used in medical image analysis.
4

Predicting Brain Amyloid Positivity from T1 weighted brain MRI and MRI-derived Gray Matter, White Matter and CSF maps using Transfer Learning on 3D CNNs*

Tamoghna Chattopadhyay et al.Feb 16, 2023
Abstract Abnormal β-amyloid (Aβ) accumulation in the brain is an early indicator of Alzheimer’s disease and practical tests could help identify patients who could respond to treatment, now that promising anti-amyloid drugs are available. Even so, Aβ positivity (Aβ+) is assessed using PET or CSF assays, both highly invasive procedures. Here, we investigate how well Aβ+ can be predicted from T1 weighted brain MRI and gray matter, white matter and cerebrospinal fluid segmentations from T1-weighted brain MRI (T1w), a less invasive alternative. We used 3D convolutional neural networks to predict Aβ+ based on 3D brain MRI data, from 762 elderly subjects (mean age: 75.1 yrs. ±7.6SD; 394F/368M; 459 healthy controls, 67 with MCI and 236 with dementia) scanned as part of the Alzheimer’s Disease Neuroimaging Initiative. We also tested whether the accuracy increases when using transfer learning from the larger UK Biobank dataset. Overall, the 3D CNN predicted Aβ+ with 76% balanced accuracy from T1w scans. The closest performance to this was using white matter maps alone when the model was pre-trained on an age prediction in the UK Biobank. The performance of individual tissue maps was less than the T1w, but transfer learning helped increase the accuracy. Although tests on more diverse data are warranted, deep learned models from standard MRI show initial promise for Aβ+ estimation, before considering more invasive procedures. Clinical Relevance Early detection of Aβ positivity from less invasive MRI images, could offer a screening test prior to more invasive testing procedures.
Load More