GZ
Giulia Zarfati
Author with expertise in Molecular Mechanisms of Muscle Regeneration and Atrophy
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
4
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
20

Machine learning inference of continuous single-cell state transitions during myoblast differentiation and fusion

Amit Shakarchy et al.Jan 1, 2023
Cells modifying their internal organization during continuous state-transitions, supporting functions from cell division to differentiation. However, tools to measure dynamic physiological states of individual transitioning cells are lacking. We combined live-cell imaging and machine learning to monitor ERK1/2-inhibited primary murine skeletal muscle precursor cells, that transition rapidly and robustly from proliferating myoblasts to post-mitotic myocytes and then fuse, forming multinucleated myotubes. Our model, trained using motility and actin intensity features from single cell tracking data, effectively tracked real-time continuous differentiation, revealing that differentiation occurs 7.5-14.5 hours post-induction, followed by fusion ~3 hours later. Co-inhibition of ERK1/2 and p38 led to differentiation without fusion. Our model inferred co-inhibition leads to terminal differentiation, indicating that p38 is specifically required for transitioning from terminal differentiation to fusion. Our model also predicted that co-inhibition leads to changes in actin dynamics. Mass spectrometry supported these in silico predictions and suggested novel fusion and maturation regulators downstream of differentiation. Collectively, this approach can be adapted to various biological processes to uncover novel links between dynamic single-cell states and their functional outcomes.