AS
Angel Sarabia
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Identifying the core genome of the nucleus-forming bacteriophage family and characterization ofErwiniaphage RAY

Amy Prichard et al.Feb 25, 2023
+36
T
J
A
We recently discovered that some bacteriophages establish a nucleus-like replication compartment (phage nucleus), but the core genes that define nucleus-based phage replication and their phylogenetic distribution were unknown. By studying phages that encode the major phage nucleus protein chimallin, including previously sequenced yet uncharacterized phages, we discovered that chimallin-encoding phages share a set of 72 highly conserved genes encoded within seven distinct gene blocks. Of these, 21 core genes are unique to this group, and all but one of these unique genes encode proteins of unknown function. We propose that phages with this core genome comprise a novel viral family we term Chimalliviridae. Fluorescence microscopy and cryo-electron tomography studies of Erwinia phage vB_EamM_RAY confirm that many of the key steps of nucleus-based replication encoded in the core genome are conserved among diverse chimalliviruses, and reveal that non-core components can confer intriguing variations on this replication mechanism. For instance, unlike previously studied nucleus-forming phages, RAY doesn't degrade the host genome, and its PhuZ homolog appears to form a five-stranded filament with a lumen. This work expands our understanding of phage nucleus and PhuZ spindle diversity and function, providing a roadmap for identifying key mechanisms underlying nucleus-based phage replication.
1
Citation2
0
Save
0

O-antigen biosynthesis mediates evolutionary trade-offs within a simple community

T. Noakes et al.Jan 1, 2023
+5
G
T
T
Diverse populations of bacteriophages infect and co-evolve with their bacterial hosts. Although host recognition and infection occurs within microbiomes, the molecular mechanisms underlying host-phage interactions within a community context remain poorly studied. The biofilms (rinds) of aged cheeses contain taxonomically diverse microbial communities that follow reproducible growth patterns and can be manipulated under laboratory conditions. In this study, we use cheese as a model for studying phage-microbe interactions by identifying and characterizing a tractable host-phage pair co-occurring within a model Brie community. We isolated novel bacteriophage TS33 that kills Hafnia sp. JB232 (hereafter Hafnia), a member of the model community. TS33 is easily propagated in the lab and naturally co-occurs in the cheese with the Brie community, rendering it a prime candidate for the study of host-phage interactions. We performed growth assays of the Hafnia, TS33 and the fungal community members, Geotrichum candidum and Penicillium camemberti. Employing Random Barcode Transposon Sequencing (RB-TnSeq) experiments, we identified candidate host factors that contribute to TS33 infectivity, many of which are critical to the integrity of bacterial O-antigen. Notably, disruption of these genes results in decreased susceptibility to infection by phage TS33, while simultaneously exhibiting a significant negative effect on the fitness of Hafnia in the presence of the fungi. Therefore, O-antigen mutations may have pleiotropic effects on the interactions between Hafnia and the rest of the Brie community. Ongoing and future studies aim to unearth the molecular mechanisms by which the O-antigen of Hafnia mediates its interactions with its viral and fungal partners.