AP
Aditi Prabhakar
Author with expertise in Genomic Expression and Function in Yeast Organism
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
5
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
47

Neuronal mTORC1 inhibition promotes longevity without suppressing anabolic growth and reproduction inC. elegans

Hannah Smith et al.Aug 12, 2021
ABSTRACT One of the most robust and reproducible methods to prolong lifespan in a variety of organisms is inhibition of the mTORC1 (mechanistic target of rapamycin complex 1) pathway. mTORC1 is a metabolic sensor that promotes anabolic growth when nutrients are abundant. Inhibition of mTORC1 extends lifespan, but also frequently has other effects such as stunted growth, slowed development, reduced fertility, and disrupted metabolism. It has long been assumed that suppression of anabolism and resulting phenotypes such as impaired growth and reproduction may be causal to mTORC1 longevity, but this hypothesis has not been directly tested. RAGA-1 is an upstream activator of TORC1. Previous work from our lab using a C. elegans model of mTORC1 longevity, the long-lived raga-1 null mutant, found that the presence of raga-1 only in the neurons suppresses longevity of the null mutant. Here, we use the auxin-inducible degradation (AID) system to test whether neuronal mTORC1 inhibition is sufficient for longevity, and whether any changes in lifespan are also linked to stunted growth or fertility. We find that life-long AID of RAGA-1 either in all somatic tissue or only in the neurons of C. elegans is sufficient to extend lifespan. We also find that AID of RAGA-1 or LET-363/mTOR beginning at day 1 of adulthood extends lifespan to a similar extent. Unlike somatic degradation of RAGA-1, neuronal degradation of RAGA-1 doesn’t impair growth, slow development, or decrease the reproductive capacity of the worms. Lastly, while AID of LET-363/mTOR in all somatic cells shortens lifespan, neuronal AID of LET-363/mTOR slows aging. This work demonstrates that targeting mTORC1 specifically in the neurons uncouples longevity from growth and reproductive impairments, challenging previously held ideas about the mechanisms of mTORC1 longevity and elucidating the promise of tissue-specific aging therapeutics.
47
Citation3
0
Save
2

New Features Surrounding the Cdc42-Ste20 Module that Regulates MAP Kinase Signaling in Yeast

Beatriz González et al.Feb 28, 2023
ABSTRACT Mitogen-activated protein kinase (MAPK) pathways regulate multiple cellular responses, including the response to stress and cell differentiation, and are highly conserved across eukaryotes from yeast to humans. In yeast, the canonical activation of several MAPK pathways includes the interaction of the small GTPase Cdc42p with the p21-activated kinase (PAK) Ste20p. We recently found that the active conformation of Cdc42p is regulated by turnover, which impacts the activity of the pathway that regulates filamentous growth (fMAPK). Here, we show that Ste20p is turned over by the 26S proteasome. Ste20p was stabilized when bound to Cdc42p, presumably to sustain MAPK pathway signaling. Ste20p is a major conduit by which signals flow through the fMAPK pathway; however, by genetic approaches we also identified a Ste20p-independent branch of the fMAPK pathway. Ste20p-dependent signaling required the 14-3-3 proteins, Bmh1p and Bmh2p, while Ste20p-independent signaling required the fMAPK pathway adaptor and Cdc42p-interacting protein, Bem4p. Ste20p-independent signaling was inhibited by one of the GTPase-activating proteins for Cdc42p in the fMAPK pathway, Rga1p, which also dampened basal but not active fMAPK pathway activity. Finally, the polarity adaptor and Cdc42p-interacting protein, Bem1p, which also regulates the fMAPK pathway, interacts with the tetra-span protein Sho1p, connecting a sensor at the plasma membrane to a protein that regulates the GTPase module. Collectively, these data reveal new regulatory features surrounding a Rho-PAK module that may extend to other pathways that control cell differentiation.
2
Citation2
0
Save
0

Regulation of Bud Emergence by a MAPK Pathway

Aditi Prabhakar et al.Sep 30, 2019
ABSTRACT All cells establish and maintain an axis of polarity that is critical for cell shape and progression through the cell cycle. A well-studied example of polarity establishment is bud emergence in yeast, where the Rho GTPase Cdc42p regulates symmetry breaking at bud sites and the establishment of polarity by interacting with effector proteins. The prevailing view of bud emergence does not account for regulation by extrinsic cues or signal transduction pathways. Here, we show that the MAPK pathway that controls filamentous growth (fMAPK pathway), which also requires Cdc42p and the effector p21 activated kinase (PAK) Ste20p, regulates bud emergence under nutrient-limiting conditions that favor filamentous/invasive growth. The fMAPK pathway regulated the expression of polarity targets that included the gene encoding a direct effector of Cdc42p, Gic2p. The fMAPK pathway also stimulated GTP-Cdc42p levels, which is a critical determinant of polarity establishment. The fMAPK pathway activity was spatially restricted to bud sites and highest at a period in the cell cycle that coincided with bud emergence. Time-lapse fluorescence microscopy showed that the fMAPK pathway stimulated the rate of bud emergence during filamentous growth. Unregulated activation of the fMAPK pathway induced growth at multiple sites that resulted from multiple rounds of symmetry breaking inside the growing bud. Collectively, our findings identify a new regulatory aspect of bud emergence that sensitizes this essential cellular process to external cues.
0

Proteins That Interact with the Mucin-Type Glycoprotein Msb2p Include Regulators of the Actin Cytoskeleton

Aditi Prabhakar et al.Sep 29, 2019
ABSTRACT Transmembrane mucin-type glycoproteins can regulate signal transduction pathways. In yeast, signaling mucins regulate mitogen-activated protein kinase (MAPK) pathways that induce cell differentiation to filamentous growth (fMAPK pathway) and the response to osmotic stress (HOG pathway). To explore regulatory aspects of signaling mucin function, protein microarrays were used to identify proteins that interact with the cytoplasmic domain of the mucin-like glycoprotein, Msb2p. Eighteen proteins were identified that comprised functional categories of metabolism, actin filament capping and depolymerization, aerobic and anaerobic growth, chromatin organization and bud growth, sporulation, ribosome biogenesis, protein modification by iron-sulfur clusters, RNA catabolism, and DNA replication and DNA repair. A subunit of actin capping protein, Cap2p, interacted with the cytoplasmic domain of Msb2p. Cells lacking Cap2p showed altered localization of Msb2p and increased shedding of Msb2p’s N-terminal glycosylated domain. Consistent with its role in regulating the actin cytoskeleton, Cap2p, and another Msb2p-interacting protein, Aip1p, were required for the enhanced cell polarization during filamentous growth. Our study identifies proteins that connect a signalling mucin to diverse cellular processes and may provide insight into new aspects of mucin function.
23

CRTC-1 balances histone trimethylation and acetylation to promote longevity

Carlos Silva-García et al.Sep 2, 2022
SUMMARY Loss of function during ageing is accompanied by transcriptional drift, altering gene expression and contributing to a variety of age-related diseases. CREB-regulated transcriptional coactivators (CRTCs) have emerged as key regulators of gene expression that might be targeted to promote longevity. Here, we define the role of the Caenorhabditis elegans CRTC-1 in the epigenetic regulation of longevity. Endogenous CRTC-1 binds chromatin factors, including components of the COMPASS complex, which trimethylates lysine 4 on histone H3 (H3K4me3). CRISPR editing of endogenous CRTC-1 reveals that the CREB-binding domain in neurons is specifically required for H3K4me3-dependent longevity. However, this effect is independent of CREB but instead acts via the transcription factor AP-1. Strikingly, CRTC-1 also mediates global histone acetylation levels, and this acetylation is essential for H3K4me3-dependent longevity. Indeed, overexpression of an acetyltransferase enzyme is sufficient to promote longevity in wild-type worms. CRTCs, therefore, link energetics to longevity by critically fine-tuning histone acetylation and methylation to promote healthy ageing.
2

Spatiotemporal Control of Pathway Sensors and Cross-Pathway Feedback Regulate a Cell Differentiation MAPK Pathway in Yeast

Aditi Prabhakar et al.Dec 19, 2020
ABSTRACT Mitogen-Activated Protein Kinase (MAPK) pathways control cell differentiation and the response to stress. MAPK pathways can share components with other pathways yet induce specific responses through mechanisms that remain unclear. In Saccharomyces cerevisiae , the MAPK pathway that controls filamentous growth (fMAPK) shares components with the MAPK pathway that regulates the response to osmotic stress (HOG). By exploring temporal regulation of MAPK signaling, we show here that the two pathways exhibited different patterns of activity throughout the cell cycle. The different patterns resulted from different expression profiles of genes encoding the mucin sensors ( MSB2 for fMAPK and HKR1 for HOG). We also show that positive feedback through the fMAPK pathway stimulated the HOG pathway, presumably to modulate fMAPK pathway activity. By exploring spatial regulation of MAPK signaling, we found that the shared tetraspan protein, Sho1p, which has a dynamic localization pattern, induced the fMAPK pathway at the mother-bud neck. A Sho1p-interacting protein, Hof1p, which also localizes to the mother-bud neck and regulates cytokinesis, also regulated the fMAPK pathway. Therefore, spatial and temporal regulation of pathway sensors, and cross-pathway feedback, regulate a MAPK pathway that controls a cell differentiation response in yeast.