EC
Emma Ciccarelli
Author with expertise in Molecular Mechanisms of Aging and Longevity
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
2
h-index:
2
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

BMP signaling to pharyngeal muscle in theC. elegansimmune response to bacterial pathogen regulates anti-microbial peptide expression and pharyngeal pumping

Emma Ciccarelli et al.Mar 8, 2023
Abstract Host response to pathogens recruits multiple tissues in part through conserved cell signaling pathways. In C. elegans , the bone morphogenetic protein (BMP) like DBL-1 signaling pathway has a role in the response to infection in addition to other roles in development and post-developmental functions. In the regulation of body size and fat storage, the DBL-1 pathway acts through cell autonomous and non-autonomous signaling in the epidermis (hypodermis). We have now elucidated the tissues that respond to DBL-1 signaling upon exposure to bacterial pathogens. The receptors and Smad signal transducers for DBL-1 are expressed in pharyngeal muscle, intestine, and epidermis. We demonstrate that expression of receptor-regulated Smad (R- Smad) gene sma-3 in the pharynx is sufficient to improve the impaired survival phenotype of sma-3 mutants and that expression of sma-3 in the intestine has no effect when exposing worms to bacterial infection of the intestine. We also show that two antimicrobial peptide (AMP) genes – abf-2 and cnc-2 – are regulated by DBL-1 signaling through R-Smad SMA-3 activity in the pharynx. Finally, we show that pharyngeal pumping activity is reduced in sma-3 mutants and that other pharynx-defective mutants also have reduced survival on bacterial pathogens. Our results identify the pharynx as a tissue that responds to BMP signaling to coordinate a systemic response to bacterial pathogens. Author Summary Animals exposed to infection mount a defense through immune activation. Innate immune responses are regulated by conserved cell signaling pathways. One conserved signaling pathway involved in the C. elegans immune response is the BMP-like DBL-1 pathway. Here we demonstrate that cell non-autonomous signaling through DBL-1 mediator SMA-3 plays a significant role in the response to bacterial intestinal infection. We also identify two antimicrobial peptides regulated by this signaling mechanism in response to bacterial infection. Our work provides insight into the way in which the BMP-like signaling triggers a systemic response to regulate immunity.
11
Citation2
0
Save
0

Feedback regulation of BMP signaling by C. elegans cuticle collagens

Uday Madaan et al.Jun 28, 2019
Cellular responsiveness to environmental cues, including changes in extracellular matrix (ECM), is critical for normal processes such as development and wound healing, but can go awry, as in oncogenesis and fibrosis. One type of molecular pathway allowing this responsiveness is the bone morphogenetic protein (BMP) signaling pathway. Due to their broad and potent functions, BMPs and their signaling pathways are highly regulated at multiple levels. In Caenorhabditis elegans , the BMP ligand DBL-1 is a major regulator of body size. We have previously shown that DBL-1/BMP signaling determines body size through transcriptional regulation of cuticle collagen genes. We have now obtained evidence of feedback regulation of DBL-1/BMP by collagen genes. We analyzed four DBL-1-regulated collagen genes that affect body size. Here we show that inactivation of any one of these cuticle collagen genes reduces DBL-1/BMP signaling, as measured by a Smad activity reporter. Furthermore, we find that depletion of these collagens reduces GFP::DBL-1 fluorescence, and acts unexpectedly at the level of dbl-1 transcription. We therefore conclude that cuticle, a type of ECM, impinges on DBL-1/BMP expression and signaling. In contrast to other characterized examples, however, the feedback regulation of DBL-1/BMP signaling by collagens is likely to be contact-independent, due to the physical separation of the cuticle from DBL-1-expressing cells in the ventral nerve cord. Our results provide an entry point into a novel mechanism of regulation of BMP signaling, with broader implications for mechanical regulation of gene expression in general.
0

Mechanism of Interaction of BMP and Insulin Signaling in C. elegans Development and Homeostasis

James Clark et al.Sep 23, 2019
A small number of peptide growth factor ligands are used repeatedly in development and homeostasis to drive programs of cell differentiation and function. Cells and tissues must integrate inputs from these diverse signals correctly, while failure to do so leads to pathology, reduced fitness, or death. Previous work using the nematode C. elegans identified an interaction between the bone morphogenetic protein (BMP) and insulin/IGF-1-like signaling (IIS) pathways in the regulation of lipid homeostasis. The molecular components required for this interaction, however, were not known. Here we report that INS-4, one of 40 insulin-like peptides (ILPs), is specifically regulated by BMP signaling to modulate fat accumulation. Furthermore, we find that the IIS transcription factor DAF-16/FoxO, but not SKN-1/Nrf, acts downstream of BMP signaling in lipid homeostasis. Interestingly, BMP activity alters sensitivity of these two transcription factors to IIS-promoted cytoplasmic retention in opposite ways. Finally, we probe the extent of BMP and IIS interactions by testing two additional IIS functions, dauer formation and autophagy induction. Coupled with our previous work and that of other groups, we conclude that BMP and IIS pathways have at least three modes of interaction: independent, epistatic, and antagonistic. The molecular interactions we identify provide new insight into mechanisms of signaling crosstalk and potential therapeutic targets for IIS-related pathologies such as diabetes and metabolic syndrome.
10

TGF-β Ligand Cross-Subfamily Interactions in the Response ofCaenorhabditis elegansto Bacterial Pathogens

Emma Ciccarelli et al.May 8, 2023
Abstract The Transforming Growth Factor beta (TGF-β) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that are synergistic, cooperative, additive, and/or antagonistic. In the nematode Caenorhabditis elegans , there are only five TGF-β ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-β/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans . Here we show that all five TGF-β ligands play a role in the immune response. We also demonstrate that multiple TGF-β ligands act cooperatively as part of this response. We show that the two BMP-like ligands – DBL-1 and TIG-2 – function independently of each other in the immune response, while TIG-2/BMP and the TGF-β/Activin-like ligand TIG-3 function cooperatively. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-β/Activin signaling pathway do not play a role in survival. These results demonstrate a novel potential for BMP and TGF-β/Activin subfamily ligands to interact, and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.
0

TGF-β ligand cross-subfamily interactions in the response of Caenorhabditis elegans to a bacterial pathogen

Emma Ciccarelli et al.Jun 14, 2024
The Transforming Growth Factor beta (TGF-β) family consists of numerous secreted peptide growth factors that play significant roles in cell function, tissue patterning, and organismal homeostasis, including wound repair and immunity. Typically studied as homodimers, these ligands have the potential to diversify their functions through ligand interactions that may enhance, repress, or generate novel functions. In the nematode Caenorhabditis elegans, there are only five TGF-β ligands, providing an opportunity to dissect ligand interactions in fewer combinations than in vertebrates. As in vertebrates, these ligands can be divided into bone morphogenetic protein (BMP) and TGF-β/Activin subfamilies that predominantly signal through discrete signaling pathways. The BMP subfamily ligand DBL-1 has been well studied for its role in the innate immune response in C. elegans. Here we show that all five TGF-β ligands play a role in survival on bacterial pathogens. We also demonstrate that multiple TGF-β ligand pairs act nonredundantly as part of this response. We show that the two BMP-like ligands-DBL-1 and TIG-2-function independently of each other in the immune response, while TIG-2/BMP and the TGF-β/Activin-like ligand TIG-3 function together. Structural modeling supports the potential for TIG-2 and TIG-3 to form heterodimers. Additionally, we identify TIG-2 and TIG-3 as members of a rare subset of TGF-β ligands lacking the conserved cysteine responsible for disulfide linking mature dimers. Finally, we show that canonical DBL-1/BMP receptor and Smad signal transducers function in the response to bacterial pathogens, while components of the DAF-7 TGF-β/Activin signaling pathway do not play a major role in survival. These results demonstrate a novel potential for BMP and TGF-β/Activin subfamily ligands to interact and may provide a mechanism for distinguishing the developmental and homeostatic functions of these ligands from an acute response such as the innate immune response to bacterial pathogens.