DM
Douglas Mitchell
Author with expertise in Natural Products as Sources of New Drugs
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
18
(67% Open Access)
Cited by:
2,032
h-index:
58
/
i10-index:
111
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

antiSMASH 4.0—improvements in chemistry prediction and gene cluster boundary identification

Kai Blin et al.Apr 13, 2017
Many antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the ‘antibiotics and secondary metabolite analysis shell—antiSMASH’ has assisted researchers in efficiently performing this, both as a web server and a standalone tool. Here, we present the thoroughly updated antiSMASH version 4, which adds several novel features, including prediction of gene cluster boundaries using the ClusterFinder method or the newly integrated CASSIS algorithm, improved substrate specificity prediction for non-ribosomal peptide synthetase adenylation domains based on the new SANDPUMA algorithm, improved predictions for terpene and ribosomally synthesized and post-translationally modified peptides cluster products, reporting of sequence similarity to proteins encoded in experimentally characterized gene clusters on a per-protein basis and a domain-level alignment tool for comparative analysis of trans-AT polyketide synthase assembly line architectures. Additionally, several usability features have been updated and improved. Together, these improvements make antiSMASH up-to-date with the latest developments in natural product research and will further facilitate computational genome mining for the discovery of novel bioactive molecules.
0

A new genome-mining tool redefines the lasso peptide biosynthetic landscape

Jonathan Tietz et al.Feb 28, 2017
RODEO, an algorithm developed for RiPP natural product discovery, was applied to map out the gene clusters that encode and tailor lasso peptides and led to the identification and characterization of several new lasso peptide topologies. Ribosomally synthesized and post-translationally modified peptide (RiPP) natural products are attractive for genome-driven discovery and re-engineering, but limitations in bioinformatic methods and exponentially increasing genomic data make large-scale mining of RiPP data difficult. We report RODEO (Rapid ORF Description and Evaluation Online), which combines hidden-Markov-model-based analysis, heuristic scoring, and machine learning to identify biosynthetic gene clusters and predict RiPP precursor peptides. We initially focused on lasso peptides, which display intriguing physicochemical properties and bioactivities, but their hypervariability renders them challenging prospects for automated mining. Our approach yielded the most comprehensive mapping to date of lasso peptide space, revealing >1,300 compounds. We characterized the structures and bioactivities of six lasso peptides, prioritized based on predicted structural novelty, including one with an unprecedented handcuff-like topology and another with a citrulline modification exceptionally rare among bacteria. These combined insights significantly expand the knowledge of lasso peptides and, more broadly, provide a framework for future genome-mining efforts.
0
Citation395
0
Save
0

A prevalent peptide-binding domain guides ribosomal natural product biosynthesis

Brandon Burkhart et al.Jul 13, 2015
Bioinformatic and biochemical analyses define a conserved domain present in the biosynthetic clusters for ribosomally synthesized and post-translationally modified peptides (RiPPs) that recognizes the leader peptide and thus controls downstream processing. Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly growing class of natural products. RiPP precursor peptides can undergo extensive enzymatic tailoring to yield structurally and functionally diverse products, and their biosynthetic logic makes them attractive bioengineering targets. Recent work suggests that unrelated RiPP-modifying enzymes contain structurally similar precursor peptide–binding domains. Using profile hidden Markov model comparisons, we discovered related and previously unrecognized peptide-binding domains in proteins spanning the majority of known prokaryotic RiPP classes, and we named this conserved domain the RiPP precursor peptide recognition element (RRE). Through binding studies we verified RRE's roles for three distinct RiPP classes: linear azole-containing peptides, thiopeptides and lasso peptides. Because numerous RiPP biosynthetic enzymes act on peptide substrates, our findings have powerful predictive value as to which protein(s) drive substrate binding, thereby laying a foundation for further characterization of RiPP biosynthetic pathways and the rational engineering of new peptide-binding activities.
2

Reactivity-based screening for citrulline-containing natural products reveals a family of bacterial peptidyl arginine deiminases

Lonnie Harris et al.Jul 16, 2020
ABSTRACT Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a family of natural products defined by a genetically encoded precursor peptide that is tailored by associated biosynthetic enzymes to form the mature product. Lasso peptides are a class of RiPP defined by an isopeptide linkage between the N-terminal amine and an internal Asp/Glu residue with the C-terminus threaded through the macrocycle. This unique lariat topology, which provides considerable stability towards heat and proteases, has stimulated interest in lasso peptides as potential therapeutics. Post-translational modifications beyond the class-defining, threaded macrolactam have been reported, including one example of arginine deimination to yield citrulline. Although a citrulline-containing lasso peptide (i.e., citrulassin) was serendipitously discovered during a genome-guided campaign, the gene(s) responsible for arginine deimination has remained unknown. Herein we describe the use of reactivity-based screening to discriminate bacteria that produce arginine-versus citrulline-bearing citrulassins, culminating in the discovery and characterization of 11 new lasso peptide variants. Phylogenetic profiling identified a distally encoded peptidyl arginine deiminase (PAD) gene ubiquitous to the citrulline-containing variants. Absence of this gene correlated strongly with citrulassin variants only containing arginine ( des -citrulassin). Heterologous expression of the PAD in a non-citrulassin producer resulted in the production of the deiminated analog, confirming PAD involvement in arginine deimination. The family of PADs were then bioinformatically surveyed for a deeper understanding of its genomic context and potential role in post-translational modification of RiPPs.
2
Citation1
0
Save
0

Cell-Free Biosynthesis to Evaluate Lasso Peptide Formation and Enzyme-Substrate Tolerance

Yuan Si et al.Nov 27, 2020
Abstract Lasso peptides are ribosomally synthesized and post-translationally modified peptide (RiPP) natural products that display a unique lariat-like structure. Owing to a rigid topology, lasso peptides are unusually stable towards heat and proteolytic degradation. Some lasso peptides have been shown to bind human cell-surface receptors and exhibit anticancer properties, while others display antibacterial or antiviral activities. Known lasso peptides are produced by bacteria and genome-mining studies indicate that lasso peptides are a relatively prevalent RiPP class; however, the discovery, isolation, and characterization of lasso peptides are constrained by the lack of an efficient production system. In this study, we employ a cell-free biosynthesis (CFB) strategy to address the longstanding challenges associated with lasso peptide production. We report the successful formation of a diverse array of lasso peptides that include known examples as well as a new predicted lasso peptide from Thermobifida halotolerans . We further demonstrate the utility of CFB to rapidly generate and characterize multisite precursor peptide variants in order to evaluate the substrate tolerance of the biosynthetic pathway. We show that the lasso-forming cyclase from the fusilassin pathway can produce millions of sequence-diverse lasso peptides via CFB with an extraordinary level of sequence permissiveness within the ring region of the lasso peptide. These data lay a firm foundation for the creation of large lasso peptide libraries using CFB to identify new variants with unique properties.
0
Citation1
0
Save
2

Bioinformatic and Reactivity-Based Discovery of Linaridins

Matthew Georgiou et al.Jul 10, 2020
Abstract Linaridins are members of the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Five linaridins have been reported, which are defined by the presence of dehydrobutyrine, a dehydrated threonine residue. This work describes the development of a linaridin specific scoring module for Rapid ORF Description and Evaluation Online (RODEO), a genome-mining tool tailored towards RiPP discovery. Upon mining publicly accessible genomes available in the NCBI database, RODEO identified 561 (382 non-redundant) linaridin biosynthetic gene clusters (BGCs). Linaridin BGCs with unique gene architectures and precursor sequences markedly different from previous predictions were uncovered during these efforts. To aid in dataset validation, two new linaridins, pegvadin A and B, were detected through reactivity-based screening (RBS) and isolated from Streptomyces noursei and Streptomyces auratus , respectively. RBS involves the use of a reactive chemical probe that chemoselectively modifies a functional group present in the natural product. The dehydrated amino acids present in linaridins as α/β-unsaturated carbonyls were appropriate electrophiles for nucleophilic 1,4 addition using a thiol-functionalized probe. The data presented within significantly expands the number of predicted linaridin BGCs and serves as a road map for future work in the area. The combination of bioinformatics and RBS is a powerful approach to accelerate natural product discovery.
2
Citation1
0
Save
0

RRE-Finder: A Genome-Mining Tool for Class-Independent RiPP Discovery

Alexander Kloosterman et al.Mar 16, 2020
Nearly half of the classes of natural products known as ribosomally synthesized and post-translationally modified peptides (RiPPs) are reliant on a protein domain called the RiPP recognition element (RRE) for peptide maturation. The RRE binds specifically to a linear precursor peptide and directs the post-translational modification enzymes to their substrate. Given its prevalence across various types of RiPP biosynthetic gene clusters (BGCs), the RRE could theoretically be used as a bioinformatic handle to identify novel classes of RiPPs. In addition, due to the high affinity and specificity of most RRE:precursor peptide complexes, a thorough understanding of the RRE domain could be exploited for biotechnological applications. However, sequence divergence of the RRE domain across RiPP classes has precluded automated identification of RREs based solely on sequence similarity. Here, we introduce RRE-Finder, a novel tool for identifying RRE domains with high sensitivity. RRE-Finder can be used in precision mode to confidently identify RREs in a class-specific manner or in exploratory mode, which was designed to assist in the discovery of novel RiPP classes. RRE-Finder operating in precision mode on the UniProtKB protein database retrieved over 30,000 high-confidence RREs spanning all characterized RRE-dependent RiPP classes, as well as several yet-uncharacterized RiPP, putatively novel gene cluster architectures that will require future experimental work. Finally, RRE-Finder was used in precision mode to explore a possible evolutionary origin of the RRE domain. Altogether, RRE-Finder provides a powerful new method to probe RiPP biosynthetic diversity and delivers a rich dataset of RRE sequences that will provide a foundation for deeper biochemical studies into this intriguing and versatile protein domain.
30

McrD binds asymmetrically to methyl-coenzyme M reductase improving active site accessibility during assembly

Grayson Chadwick et al.Feb 3, 2023
ABSTRACT Methyl-coenzyme M reductase (MCR) catalyzes the formation of methane and its activity accounts for nearly all biologically produced methane released into the atmosphere. The assembly of MCR is an intricate process involving the installation of a complex set of post-translational modifications and the unique Ni porphyrin cofactor F 430 . Despite decades of research, details of MCR assembly remain largely unresolved. Here, we report the structural characterization of MCR in two intermediate states of assembly. These intermediate states lack one or both F 430 cofactors and form complexes with the previously uncharacterized McrD protein. McrD is found to bind asymmetrically to MCR, displacing large regions of the alpha subunit and increasing active site accessibility for the installation of F 430 —shedding light on the assembly of MCR and the role of McrD therein. This work offers crucial information for the expression of MCR in a heterologous host and provides new targets for the design of MCR inhibitors. One-sentence summary Structural characterization of methyl-coenzyme M reductase assembly intermediates.
Load More