EL
Emily Laltoo
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
9
(100% Open Access)
Cited by:
12
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

Age and Sex Effects on Advanced White Matter Microstructure Measures in 15,628 Older Adults: A UK Biobank Study

Katherine Lawrence et al.Sep 20, 2020
+10
V
L
K
Abstract A comprehensive characterization of the brain’s white matter is critical for improving our understanding of healthy and diseased aging. Here we used diffusion-weighted magnetic resonance imaging (dMRI) to estimate age and sex effects on white matter microstructure in a cross-sectional sample of 15,628 adults aged 45-80 years old (47.6% male, 52.4% female). Microstructure was assessed using the following four models: a conventional single-shell model, diffusion tensor imaging (DTI); a more advanced single-shell model, the tensor distribution function (TDF); an advanced multi-shell model, neurite orientation dispersion and density imaging (NODDI); and another advanced multi-shell model, mean apparent propagator MRI (MAPMRI). Age was modeled using a data-driven statistical approach, and normative centile curves were created to provide sex-stratified white matter reference charts. Participant age and sex substantially impacted many aspects of white matter microstructure across the brain, with the advanced dMRI models TDF and NODDI detecting such effects the most sensitively. These findings and the normative reference curves provide an important foundation for the study of healthy and diseased brain aging.
18
Citation4
0
Save
0

Brain Age Analysis and Dementia Classification using Convolutional Neural Networks trained on Diffusion MRI: Tests in Indian and North American Cohorts

Tamoghna Chattopadhyay et al.Feb 6, 2024
+9
S
N
T
Abstract Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer’s disease or infer dementia severity from T1-weighted brain MRI scans. Here, we examine the value of adding diffusion-weighted MRI (dMRI) as an input to these models. Much research in this area focuses on specific datasets such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI), which assesses people of North American, largely European ancestry, so we examine how models trained on ADNI, generalize to a new population dataset from India (the NIMHANS cohort). We first benchmark our models by predicting “brain age” - the task of predicting a person’s chronological age from their MRI scan and proceed to AD classification. We also evaluate the benefit of using a 3D CycleGAN approach to harmonize the imaging datasets before training the CNN models. Our experiments show that classification performance improves after harmonization in most cases, as well as better performance for dMRI as input.
1

Along-Tract Statistical Mapping of Microstructural Abnormalities in Bipolar Disorder: A Pilot Study

Leila Nabulsi et al.Mar 10, 2023
+7
F
G
L
Abstract Investigating brain circuitry involved in bipolar disorder (BD) is key to discovering brain biomarkers for genetic and interventional studies of the disorder. Even so, prior research has not provided a fine-scale spatial mapping of brain microstructural differences in BD. In this pilot diffusion MRI dataset, we used BUndle ANalytics (BUAN), a recently developed analytic approach for tractography, to extract, map, and visualize the profile of microstructural abnormalities on a 3D model of fiber tracts in people with BD (N=38) and healthy controls (N=49), and investigate along-tract white matter (WM) microstructural differences between these groups. Using the BUAN pipeline, BD was associated with lower mean Fractional Anisotropy (FA) in fronto-limbic and interhemispheric pathways and higher mean FA in posterior bundles relative to controls. BUAN combines tractography and anatomical information to capture distinct along-tract effects on WM microstructure that may aid in classifying diseases based on anatomical differences.
30

White matter microstructure shows sex differences in late childhood: Evidence from 6,797 children

Katherine Lawrence et al.Aug 19, 2021
+4
E
Z
K
Sex differences in white matter microstructure have been robustly demonstrated in the adult brain using both conventional and advanced diffusion-weighted magnetic resonance imaging (dMRI) approaches. However, sex differences in white matter microstructure prior to adulthood remain poorly understood; previous developmental work focused on conventional microstructure metrics and yielded mixed results. Here we rigorously characterized sex differences in white matter microstructure among over 6,000 children from the Adolescent Brain Cognitive Development (ABCD) Study who were between 9 and 10 years old. Microstructure was quantified using both the conventional model - diffusion tensor imaging (DTI) - and an advanced model, restriction spectrum imaging (RSI). DTI metrics included fractional anisotropy (FA) and mean, axial, and radial diffusivity (MD, AD, RD). RSI metrics included normalized isotropic, directional, and total intracellular diffusion (N0, ND, NT). We found significant and replicable sex differences in DTI or RSI microstructure metrics in every white matter region examined across the brain. Sex differences in FA were regionally specific. Across white matter regions, boys exhibited greater MD, AD, and RD than girls, on average. Girls displayed increased N0, ND, and NT compared to boys, on average, suggesting greater cell and neurite density in girls. Together, these robust and replicable findings provide an important foundation for understanding sex differences in health and disease.
0

Sex Differences in the Brain’s White Matter Microstructure during Development assessed using Advanced Diffusion MRI Models

Sebastian Benavidez et al.Feb 4, 2024
+4
G
Z
S
Abstract Typical sex differences in white matter (WM) microstructure during development are incompletely understood. Here we evaluated sex differences in WM microstructure during typical brain development using a sample of neurotypical individuals across a wide developmental age (N=239, aged 5-22 years). We used the conventional diffusion-weighted MRI (dMRI) model, diffusion tensor imaging (DTI), and two advanced dMRI models, the tensor distribution function (TDF) and neurite orientation dispersion density imaging (NODDI) to assess WM microstructure. WM microstructure exhibited significant, regionally consistent sex differences across the brain during typical development. Additionally, the TDF model was most sensitive in detecting sex differences. These findings highlight the importance of considering sex in neurodevelopmental research and underscore the value of the advanced TDF model.
1

Deep Normative Tractometry for Identifying Joint White Matter Macro- and Micro-structural Abnormalities in Alzheimer’s Disease

Yixue Feng et al.Feb 6, 2024
+10
J
S
Y
Abstract This study introduces the Deep Normative Tractometry (DNT) framework, that encodes the joint distribution of both macrostructural and microstructural profiles of the brain white matter tracts through a variational autoencoder (VAE). By training on data from healthy controls, DNT learns the normative distribution of tract data, and can delineate along-tract micro- and macro-structural abnormalities. Leveraging a large sample size via generative pre-training, we assess DNT’s generalizability using transfer learning on data from an independent cohort acquired in India. Our findings demonstrate DNT’s capacity to detect widespread diffusivity abnormalities along tracts in mild cognitive impairment and Alzheimer’s disease, aligning closely with results from the Bundle Analytics (BUAN) tractometry pipeline. By incorporating tract geometry information, DNT may be able to distinguish disease-related abnormalities in anisotropy from tract macrostructure, and shows promise in enhancing fine-scale mapping and detection of white matter alterations in neurodegenerative conditions.
1
Citation1
0
Save
1

Comparison of Anatomical and Diffusion MRI for detecting Parkinson’s Disease using Deep Convolutional Neural Network

Tamoghna Chattopadhyay et al.May 1, 2023
+11
A
C
T
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects over 10 million people worldwide. Brain atrophy and microstructural abnormalities tend to be more subtle in PD than in other age-related conditions such as Alzheimer's disease, so there is interest in how well machine learning methods can detect PD in radiological scans. Deep learning models based on convolutional neural networks (CNNs) can automatically distil diagnostically useful features from raw MRI scans, but most CNN-based deep learning models have only been tested on T1-weighted brain MRI. Here we examine the added value of diffusion-weighted MRI (dMRI) - a variant of MRI, sensitive to microstructural tissue properties - as an additional input in CNN-based models for PD classification. Our evaluations used data from 3 separate cohorts - from Chang Gung University, the University of Pennsylvania, and the PPMI dataset. We trained CNNs on various combinations of these cohorts to find the best predictive model. Although tests on more diverse data are warranted, deep-learned models from dMRI show promise for PD classification.This study supports the use of diffusion-weighted images as an alternative to anatomical images for AI-based detection of Parkinson's disease.
0

Comparison of Explainable AI Models for MRI-based Alzheimer′s Disease Classification

Tamoghna Chattopadhyay et al.Sep 17, 2024
+11
C
N
T
Deep learning models based on convolutional neural networks (CNNs) have been used to classify Alzheimer′s disease or infer dementia severity from 3D T1-weighted brain MRI scans. Here, we examine the value of adding occlusion sensitivity analysis (OSA) and gradient-weighted class activation mapping (Grad-CAM) to these models to make the results more interpretable. Much research in this area focuses on specific datasets such as the Alzheimer′s Disease Neuroimaging Initiative (ADNI) or National Alzheimer′s Coordinating Center (NACC), which assess people of North American, predominantly European ancestry, so we examine how well models trained on these data generalize to a new population dataset from India (NIMHANS cohort). We also evaluate the benefit of using a combined dataset to train the CNN models. Our experiments show feature localization consistent with knowledge of AD from other methods. OSA and Grad-CAM resolve features at different scales to help interpret diagnostic inferences made by CNNs.
0

Counterfactual MRI Generation with Denoising Diffusion Models for Interpretable Alzheimer’s Disease Effect Detection

Nikhil Dhinagar et al.Feb 8, 2024
P
E
S
N
Abstract Generative AI models have recently achieved mainstream attention with the advent of powerful approaches such as stable diffusion, DALL-E and MidJourney. The underlying breakthrough generative mechanism of denoising diffusion modeling can generate high quality synthetic images and can learn the underlying distribution of complex, high-dimensional data. Recent research has begun to extend these models to medical and specifically neuroimaging data. Typical neuroimaging tasks such as diagnostic classification and predictive modeling often rely on deep learning approaches based on convolutional neural networks (CNNs) and vision transformers (ViTs), with additional steps to help in interpreting the results. In our paper, we train conditional latent diffusion models (LDM) and denoising diffusion probabilistic models (DDPM) to provide insight into Alzheimer’s disease (AD) effects on the brain’s anatomy at the individual level. We first created diffusion models that could generate synthetic MRIs, by training them on real 3D T1-weighted MRI scans, and conditioning the generative process on the clinical diagnosis as a context variable. We conducted experiments to overcome limitations in training dataset size, compute time and memory resources, testing different model sizes, effects of pretraining, training duration, and latent diffusion models. We tested the sampling quality of the disease-conditioned diffusion using metrics to assess realism and diversity of the generated synthetic MRIs. We also evaluated the ability of diffusion models to conditionally sample MRI brains using a 3D CNN-based disease classifier relative to real MRIs. In our experiments, the diffusion models generated synthetic data that helped to train an AD classifier (using only 500 real training scans) -and boosted its performance by over 3% when tested on real MRI scans. Further, we used implicit classifier-free guidance to alter the conditioning of an encoded individual scan to its counterfactual (representing a healthy subject of the same age and sex) while preserving subject-specific image details. From this counterfactual image (where the same person appears healthy), a personalized disease map was generated to identify possible disease effects on the brain. Our approach efficiently generates realistic and diverse synthetic data, and may create interpretable AI-based maps for neuroscience research and clinical diagnostic applications.