Publish
Home
Live
new
RH Journal
ResearchCoin
Grants
Funding
Browse
Journals
Hubs
Tools
Lab Notebook
Beta
Reference Manager
Resources
Verify Identity
Community
Support
About
Terms
Privacy
Issues
Docs
Author
Log in
Sign up
YC
Yin Chung
Author with expertise in Mass Spectrometry Techniques
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
1
(100% Open Access)
Cited by:
2
h-index:
5
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Overview
Publications
1
Peer Reviews
Comments
Grants
Publications
3
Structural basis of GAIN domain autoproteolysis and cleavage-resistance in the adhesion G-protein coupled receptors
Fabian Pohl
et al.
Mar 12, 2023
Abstract The GAIN domain is a hallmark of adhesion G-protein coupled receptors (aGPCRs) as this extracellular domain contains an integral agonistic sequence ( Stachel ) for activation via binding to the 7-transmembrane helical (7TM) domain of the receptor. Many aGPCRs are autoproteolytically cleaved at the GPCR proteolysis site (GPS) site within the GAIN domain formed HXS/T sequence motif. However, other aGPCR can be activated without GPS cleavage. We determined the crystal structure of the human ADGRB2/BAI2 hormone receptor (HormR) and GPCR autoproteolysis-inducing (GAIN) domains and found that this aGPCR is resistant to autoproteolysis despite the presence of a canonical HLS sequence motif at the GPS. We used structural comparisons and molecular dynamics (MD) simulations to identify structural determinants that are important for autocleavage beyond the canonical HXS/T motif. These studies characterized a conserved glycine residue and an edge-π interaction of the histidine base of the GPS sequence with a phenylalanine residue that is highly conserved in cleavage-competent aGPCRs. The MD simulations showed that this interaction is important to position the imidazole group of the histidine for deprotonation of the serine or threonine nucleophile. Removal of this interaction reduced autoprote-olytic activity in the ADGRL1 receptor and restored cleavage competence of the ADGRB3 receptor in a R866H/L821F double mutant. Conservation analysis indicates that wild-type ADGRB2 and ADGRB3 are auto-cleavage-incompetent receptors.
Biochemistry
Molecular Biology
3
Paper
Biochemistry
2
0
Save