SL
Shuqi Li
Author with expertise in Diagnosis, Treatment, and Epidemiology of Nontuberculous Mycobacterial Diseases
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(100% Open Access)
Cited by:
16
h-index:
27
/
i10-index:
60
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
58

A chemical-genetic map of the pathways controlling drug potency in Mycobacterium tuberculosis

Shuqi Li et al.Nov 27, 2021
ABSTRACT Mycobacterium tuberculosis (Mtb) infection is notoriously difficult to treat. Treatment efficacy is limited by Mtb’s intrinsic drug resistance, as well as its ability to evolve acquired resistance to all antituberculars in clinical use. A deeper understanding of the bacterial pathways that govern drug efficacy could facilitate the development of more effective therapies to overcome resistance, identify new mechanisms of acquired resistance, and reveal overlooked therapeutic opportunities. To define these pathways, we developed a CRISPR interference chemical-genetics platform to titrate the expression of Mtb genes and quantify bacterial fitness in the presence of different drugs. Mining this dataset, we discovered diverse and novel mechanisms of intrinsic drug resistance, unveiling hundreds of potential targets for synergistic drug combinations. Combining chemical-genetics with comparative genomics of Mtb clinical isolates, we further identified numerous new potential mechanisms of acquired drug resistance, one of which is associated with the emergence of a multidrug-resistant tuberculosis (TB) outbreak in South America. Lastly, we make the unexpected discovery of an “acquired drug sensitivity.” We found that the intrinsic resistance factor whiB7 was inactivated in an entire Mtb sublineage endemic to Southeast Asia, presenting an opportunity to potentially repurpose the macrolide antibiotic clarithromycin to treat TB. This chemical-genetic map provides a rich resource to understand drug efficacy in Mtb and guide future TB drug development and treatment.
58
Citation4
0
Save
1

Incomplete transcripts dominate the Mycobacterium tuberculosis transcriptome

Xiangwu Ju et al.Feb 28, 2024
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis (TB), an infectious disease that is responsible for major health and economic costs worldwide1. Mtb encounters diverse environments during its life cycle and responds to these changes largely by reprogramming its transcriptional output2. However, the mechanisms of Mtb transcription and how they are regulated remain poorly understood. Here we use a sequencing method that simultaneously determines both termini of individual RNA molecules in bacterial cells3 to profile the Mtb transcriptome at high resolution. Unexpectedly, we find that most Mtb transcripts are incomplete, with their 5' ends aligned at transcription start sites and 3' ends located 200-500 nucleotides downstream. We show that these short RNAs are mainly associated with paused RNA polymerases (RNAPs) rather than being products of premature termination. We further show that the high propensity of Mtb RNAP to pause early in transcription relies on the binding of the σ-factor. Finally, we show that a translating ribosome promotes transcription elongation, revealing a potential role for transcription-translation coupling in controlling Mtb gene expression. In sum, our findings depict a mycobacterial transcriptome that prominently features incomplete transcripts resulting from RNAP pausing. We propose that the pausing phase constitutes an important transcriptional checkpoint in Mtb that allows the bacterium to adapt to environmental changes and could be exploited for TB therapeutics.
1
Citation4
0
Save
5

Incomplete transcripts dominate theMycobacterium tuberculosistranscriptome

Xiangwu Ju et al.Mar 11, 2023
Mycobacterium tuberculosis (Mtb) is a bacterial pathogen that causes tuberculosis, an infectious disease that inflicts major health and economic costs around the world 1 . Mtb encounters a diversity of environments during its lifecycle, and responds to these changing environments by reprogramming its transcriptional output 2 . However, the transcriptomic features of Mtb remain poorly characterized. In this work, we comprehensively profile the Mtb transcriptome using the SEnd-seq method that simultaneously captures the 5' and 3' ends of RNA 3 . Surprisingly, we find that the RNA coverage for most of the Mtb transcription units display a gradual drop-off within a 200-500 nucleotide window downstream of the transcription start site, yielding a massive number of incomplete transcripts with heterogeneous 3' ends. We further show that the accumulation of these short RNAs is mainly due to the intrinsically low processivity of the Mtb transcription machinery rather than trans-acting factors such as Rho. Finally, we demonstrate that transcription-translation coupling plays a critical role in generating full-length protein-coding transcripts in Mtb. In sum, our results depict a mycobacterial transcriptome that is dominated by incomplete RNA products, suggesting a distinctive set of transcriptional regulatory mechanisms that could be exploited for new therapeutics.
5
Citation2
0
Save