JH
Joschka Hellmeier
Author with expertise in DNA Nanotechnology and Bioanalytical Applications
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
7
h-index:
4
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Monomeric agonist peptide/MHCII complexes activate T-cells in an autonomous fashion

René Platzer et al.Mar 14, 2023
ABSTRACT Molecular crowding of agonist peptide/MHC class II complexes (pMHCIIs) with structurally similar, yet per se non-stimulatory endogenous pMHCIIs has been postulated to sensitize T-cells for the recognition of single antigens on the surface of dendritic cells and B-cells. When testing this premise with the use of advanced live cell microscopy, we observed pMHCIIs as monomeric, randomly distributed entities diffusing rapidly after entering the APC surface. Synaptic TCR-engagement of highly abundant endogenous pMHCIIs was low or non-existent and affected neither TCR-engagement of rare agonist pMHCII in early and advanced synapses nor agonist-induced TCR-proximal signaling. Our findings highlight the capacity of single freely diffusing agonist pMHCIIs to elicit the full T-cell response in an autonomous and peptide-specific fashion with consequences for adaptive immunity and immunotherapeutic approaches. SHORT SUMMARY Platzer et al. revealed via highly quantitative and single molecule live cell microscopy the nature of peptide-loaded MHC class II molecules (pMHCII) as monomeric, densely populating, randomly distributed and predominantly rapidly diffusing entities on the surface of B-cells and dendritic cells. Low abundant stimulatory agonist pMHCII acted as autonomous units with the highest chance of T-cell detection when equally spread on APCs. The presence of bystander-pMHCII previously termed “co-agonist pMHC” affected neither synaptic agonist -TCR-binding nor efficiencies of T-cell recognition. “Co-agonist”-TCR-binding resembled random molecular collisions. Findings inform the design of T-cell-based immunotherapies.
3
Citation2
0
Save
1

Strategies for the site-specific decoration of DNA origami nanostructures with functionally intact proteins

Joschka Hellmeier et al.Jul 1, 2021
Abstract DNA origami structures provide flexible scaffolds for the organization of single biomolecules with nanometer precision. While they find increasing use for a variety of biological applications, the functionalization with proteins at defined stoichiometry, high yield, and under preservation of protein function remains challenging. In this study, we applied single molecule fluorescence microscopy in combination with a cell biological functional assay to systematically evaluate different strategies for the site-specific decoration of DNA origami structures, focusing on efficiency, stoichiometry and protein functionality. Using an activating ligand of the T-cell receptor (TCR) as protein of interest, we found that two commonly used methodologies underperformed with regard to stoichiometry and protein functionality. While strategies employing tetravalent wildtype streptavidin for coupling of a biotinylated TCR-ligand yielded mixed populations of DNA origami structures featuring up to 3 proteins, the use of divalent (dSAv) or DNA-conjugated monovalent streptavidin (mSAv) allowed for site-specific attachment of a single biotinylated TCR-ligand. The most straightforward decoration strategy, via covalent DNA conjugation, resulted in a 3-fold decrease in ligand potency, likely due to charge-mediated impairment of protein function. Replacing DNA with charge-neutral PNA in a ligand conjugate emerged as the coupling strategy with the best overall performance in our study, as it produced the highest yield with no multivalent DNA origami structures and fully retained protein functionality. With our study we aim to provide guidelines for the stoichiometrically defined, site-specific functionalization of DNA origami structures with proteins of choice serving a wide range of biological applications.