AN
Aivi Nguyen
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
6
h-index:
14
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
15

Novel VCP activator reverses multisystem proteinopathy nuclear proteostasis defects and enhances TDP-43 aggregate clearance

Jessica Phan et al.Mar 15, 2023
Pathogenic variants in VCP cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget's disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature, ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified four novel compounds that activate VCP primarily by increasing D2 ATPase activity whereby pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that MSP may be the result of impaired nuclear proteostasis, and that VCP activation may be potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.
15
Citation2
0
Save
0

VCP activator reverses nuclear proteostasis defects and enhances TDP-43 aggregate clearance in multisystem proteinopathy models

Jessica Phan et al.May 23, 2024
Pathogenic variants in VCP cause multisystem proteinopathy (MSP), a disease characterized by multiple clinical phenotypes including inclusion body myopathy, Paget's disease of the bone, and frontotemporal dementia (FTD). How such diverse phenotypes are driven by pathogenic VCP variants is not known. We found that these diseases exhibit a common pathologic feature, ubiquitinated intranuclear inclusions affecting myocytes, osteoclasts and neurons. Moreover, knock-in cell lines harboring MSP variants show a reduction in nuclear VCP. Given that MSP is associated with neuronal intranuclear inclusions comprised of TDP-43 protein, we developed a cellular model whereby proteostatic stress results in the formation of insoluble intranuclear TDP-43 aggregates. Consistent with a loss of nuclear VCP function, cells harboring MSP variants or cells treated with VCP inhibitor exhibited decreased clearance of insoluble intranuclear TDP-43 aggregates. Moreover, we identified four compounds that activate VCP primarily by increasing D2 ATPase activity whereby pharmacologic VCP activation appears to enhance clearance of insoluble intranuclear TDP-43 aggregate. Our findings suggest that VCP function is important for nuclear protein homeostasis, that impaired nuclear proteostasis may contribute to MSP, and that VCP activation may be potential therapeutic by virtue of enhancing the clearance of intranuclear protein aggregates.
0
Citation2
0
Save
26

Synthesizing Images of Tau Pathology from Cross-modal Neuroimaging using Deep Learning

Jeyeon Lee et al.Sep 12, 2022
Abstract Given the prevalence of dementia and the development of pathology-specific disease modifying therapies, high-value biomarker strategies to inform medical decision making are critical. In-vivo tau positron emission tomography (PET) is an ideal target as a biomarker for Alzheimer’s disease diagnosis and treatment outcome measure. However, tau PET is not currently widely accessible to patients compared to other neuroimaging methods. In this study, we present a convolutional neural network (CNN) model that impute tau PET images from more widely-available cross-modality imaging inputs. Participants (n=1,192) with brain MRI, fluorodeoxyglucose (FDG) PET, amyloid PET, and tau PET were included. We found that a CNN model can impute tau PET images with high accuracy, the highest being for the FDG-based model followed by amyloid PET and MRI. In testing implications of AI-imputed tau PET, only the FDG-based model showed a significant improvement of performance in classifying tau positivity and diagnostic groups compared to the original input data, suggesting that application of the model could enhance the utility of the metabolic images. The interpretability experiment revealed that the FDG- and MRI-based models utilized the non-local input from physically remote ROIs to estimate the tau PET, but this was not the case for the PiB-based model. This implies that the model can learn the distinct biological relationship between FDG PET, MRI, and tau PET from the relationship between amyloid PET and tau PET. Our study suggests that extending neuroimaging’s use with artificial intelligence to predict protein specific pathologies has great potential to inform emerging care models.
0

Longitudinal FDG-PET Metabolic Change Along the Lewy Body Continuum

Daniel Ferreira et al.Jan 13, 2025
Importance Although 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established cross-sectional biomarker of brain metabolism in dementia with Lewy bodies (DLB), the longitudinal change in FDG-PET has not been characterized. Objective To investigate longitudinal FDG-PET in prodromal DLB and DLB, including a subsample with autopsy data, and report estimated sample sizes for a hypothetical clinical trial in DLB. Design, Setting, and Participants Longitudinal case-control study with mean (SD) follow-up of 3.8 (2.3) years. Cases were recruited consecutively between 2007 and 2022 at a referral center and among the population. Patients with probable DLB or mild cognitive impairment with Lewy bodies (MCI-LB) were included. Individuals without cognitive impairment were included from a population-based cohort balanced on age and sex for comparison. All participants completed at least 1 follow-up assessment by design. Exposure Patients with MCI-LB and DLB. Main Outcomes and Measures Rate of change in FDG-PET was assessed as standardized uptake value ratios (SUVr). Clinical progression was assessed with the Clinical Dementia Rating Sum of Boxes (CDR-SB) score. Results Thirty-five patients with probable DLB, 37 patients with MCI-LB, and 100 individuals without cognitive impairment were included. The mean (SD) age of the DLB and MCI-LB groups combined (n = 72) was 69.6 (8.2) years; 66 patients (92%) were men and 6 (8%) were women. At follow-up, 18 participants (49%) with MCI-LB had progressed to probable DLB. Patients with MCI-LB had a faster decline in FDG-SUVr, compared with that of participants without cognitive impairment, in the posterior cingulate, occipital, parietal, temporal, and lateral frontal cortices. The same regions showed greater metabolic decline in patients with DLB than in participants without cognitive impairment, with the addition of anterior-middle cingulate, insula, and medial frontal orbital cortices. Rates of change in FDG-PET in these brain regions were combined into a region of interest (ROI) labeled longitudinal FDG-PET LB meta-ROI. The rate of change in FDG-SUVr in the meta-ROI correlated with the rate of change in CDR-SB, and sample size estimates were reported for potential clinical trials in DLB. Findings were confirmed in the subsample with neuropathologic confirmation (n = 20). Conclusions and Relevance This study found that brain hypometabolism begins to evolve during the prodromal stages of DLB with changes paralleling symptomatic progression. These data may inform clinical practice and trials planning to use FDG-PET for biologic staging, monitoring disease progression, and potentially assessing treatment response.
0

Can integration of Alzheimer’s plasma biomarkers with MRI, cardiovascular, genetics, and lifestyle measures improve cognition prediction?

Robel Gebre et al.Sep 4, 2024
Abstract There is increasing interest in Alzheimer’s disease related plasma biomarkers due to their accessibility and scalability. We hypothesized that integrating plasma biomarkers with other commonly used and available participant data (MRI, cardiovascular factors, lifestyle, genetics) using machine learning (ML) models can improve individual prediction of cognitive outcomes. Further, our goal was to evaluate the heterogeneity of these predictors across different age strata. This longitudinal study included 1185 participants from the Mayo Clinic Study of Aging who had complete plasma analyte workup at baseline. We used the Quanterix Simoa immunoassay to measure neurofilament light, Aβ1–42 and Aβ1–40 (used as Aβ42/Aβ40 ratio), glial fibrillary acidic protein, and phosphorylated tau 181 (p-tau181). Participants’ brain health was evaluated through gray and white matter structural MRIs. The study also considered cardiovascular factors (hyperlipidemia, hypertension, stroke, diabetes, chronic kidney disease), lifestyle factors (area deprivation index, body mass index, cognitive and physical activities), and genetic factors (APOE, single nucleotide polymorphisms, and polygenic risk scores. An ML model was developed to predict cognitive outcomes at baseline and decline (slope). Three models were created: a base model with groups of risk factors as predictors, an enhanced model included socio-demographics, and a final enhanced model by incorporating plasma and socio-demographics into the base models. Models were explained using for three age strata: younger than 65 years, 65-80 years, and older than 80 years, and further divided based on amyloid positivity status. Regardless of amyloid status the plasma biomarkers showed comparable performance (R²=0.15) to MRI (R²=0.18) and cardiovascular measures (R²=0.10) when predicting cognitive decline. Inclusion of cardiovascular or MRI measures with plasma in the presence of socio-demographic improved cognitive decline prediction (R²=0.26 and 0.27). For amyloid positive individuals Aβ42/Aβ40, glial fibrillary acidic protein, and p-tau181 were the top predictors of cognitive decline while Aβ42/Aβ40 was prominent for amyloid negative participants across all age groups. Socio-demographics explained a large portion of the variance in the amyloid negative individuals while the plasma biomarkers predominantly explained the variance in amyloid positive individuals (21% to 37% from the younger to the older age group). Plasma biomarkers performed similarly to MRI and cardiovascular measures when predicting cognitive outcomes and combining them with either measure resulted in better performance. Top predictors were heterogeneous between cross-sectional and longitudinal cognition models, across age groups, and amyloid status. Multimodal approaches will enhance the usefulness of plasma markers through careful considerations of a study population’s socio-demographics, brain, and cardiovascular health.
0

Impaired microglial phagocytosis promotes seizure development

Dale Bosco et al.Jan 2, 2024
Abstract In the central nervous system, triggering receptor expressed on myeloid cells 2 (TREM2) is exclusively expressed by microglia and is critical for microglial proliferation, migration, and phagocytosis. TREM2 plays an important role in neurodegenerative diseases, such as Alzheimer’s disease and amyotrophic lateral sclerosis. However, little is known about the role TREM2 plays in epileptogenesis. To investigate this, we utilized TREM2 knockout (KO) mice within the murine intra-amygdala kainic acid seizure model. Electroencephalographic analysis, immunocytochemistry, and RNA sequencing revealed that TREM2 deficiency significantly promoted seizure-induced pathology. We found that TREM2 KO increased both acute status epilepticus and spontaneous recurrent seizures characteristic of chronic focal epilepsy. Mechanistically, phagocytic clearance of damaged neurons by microglia was impaired in TREM2 KO mice and the reduced phagocytic capacity correlated with increased spontaneous seizures. Analysis of human tissue from patients who underwent surgical resection for drug resistant temporal lobe epilepsy also showed a negative correlation between microglial phagocytic activity and focal to bilateral tonic-clonic generalized seizure history. These results indicate that microglial TREM2 and phagocytic activity may be important to epileptogenesis and the progression of focal temporal lobe epilepsy. One Sentence Summary Phagocytic activity of microglia may impact generalized seizure development within both mice and humans.
0

Rod-shaped microglia interact with neuronal dendrites to regulate cortical excitability in TDP-43 related neurodegeneration

Manling Xie et al.Jul 2, 2024
Abstract Motor cortical hyperexcitability is well-documented in the presymptomatic stage of amyotrophic lateral sclerosis (ALS). However, the mechanisms underlying this early dysregulation are not fully understood. Microglia, as the principal immune cells of the central nervous system, have emerged as important players in sensing and regulating neuronal activity. Here we investigated the role of microglia in the motor cortical circuits in a mouse model of TDP-43 neurodegeneration (rNLS8). Utilizing multichannel probe recording and longitudinal in vivo calcium imaging in awake mice, we observed neuronal hyperactivity at the initial stage of disease progression. Spatial and single-cell RNA sequencing revealed that microglia are the primary responders to motor cortical hyperactivity. We further identified a unique subpopulation of microglia, rod-shaped microglia, which are characterized by a distinct morphology and transcriptional profile. Notably, rod-shaped microglia predominantly interact with neuronal dendrites and excitatory synaptic inputs to attenuate motor cortical hyperactivity. The elimination of rod-shaped microglia through TREM2 deficiency increased neuronal hyperactivity, exacerbated motor deficits, and further decreased survival rates of rNLS8 mice. Together, our results suggest that rod-shaped microglia play a neuroprotective role by attenuating cortical hyperexcitability in the mouse model of TDP-43 related neurodegeneration.