LA
Leonardo Augusto
Author with expertise in Toxoplasmosis and Neosporosis Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
4
h-index:
13
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Coxiella burnetiiactively blocks IL-17-induced oxidative stress in macrophages

Tatiana Clemente et al.Mar 15, 2023
Coxiella burnetii is a highly infectious pathogen that causes Q fever, a leading cause of culture-negative endocarditis. Coxiella first targets alveolar macrophages and forms a phagolysosome-like compartment called the Coxiella-Containing Vacuole (CCV). Successful host cell infection requires the Type 4B Secretion System (T4BSS), which translocates bacterial effector proteins across the CCV membrane into the host cytoplasm, where they manipulate numerous cell processes. Our prior transcriptional studies revealed that Coxiella T4BSS blocks IL-17 signaling in macrophages. Given that IL-17 is known to protect against pulmonary pathogens, we hypothesize that C. burnetii T4BSS downregulates intracellular IL-17 signaling to evade the host immune response and promote bacterial pathogenesis. Using a stable IL-17 promoter reporter cell line, we confirmed that Coxiella T4BSS blocks IL-17 transcription activation. Assessment of the phosphorylation state of NF-κB, MAPK, and JNK revealed that Coxiella downregulates IL-17 activation of these proteins. Using ACT1 knockdown and IL-17RA or TRAF6 knockout cells, we next determined that IL17RA-ACT1-TRAF6 pathway is essential for the IL-17 bactericidal effect in macrophages. In addition, macrophages stimulated with IL-17 generate higher levels of reactive oxygen species, which is likely connected to the bactericidal effect of IL-17. However, C. burnetii T4SS effector proteins block the IL-17-mediated oxidative stress, suggesting that Coxiella blocks IL-17 signaling to avoid direct killing by the macrophages.
6
Citation2
0
Save
15

TgIF2K-B is an eIF2α kinase in Toxoplasma gondii that responds to oxidative stress and optimizes pathogenicity

Leonardo Augusto et al.Sep 25, 2020
Abstract Toxoplasma gondii is an obligate intracellular parasite that persists in its vertebrate hosts in the form of dormant tissue cysts, which facilitate transmission through predation. The parasite must strike a balance that allows it to disseminate throughout its host without killing it, which requires the ability to properly counter host cell defenses. For example, oxidative stress encountered by Toxoplasma is suggested to impair parasite replication and dissemination. However, the strategies by which Toxoplasma mitigates oxidative stress are not completely clear. Among eukaryotes, environmental stresses induce the integrated stress response via phosphorylation of a translation initiation factor, eIF2. Here, we show that the Toxoplasma eIF2 kinase, TgIF2K-B, is activated in response to oxidative stress and affords protection. Knockout of TgIF2K-B, Δ tgif2k-b , disrupted parasite responses to oxidative stresses and enhanced replication, diminishing the ability of the parasite to differentiate into tissue cysts. In addition, parasites lacking TgIF2K-B exhibited resistance to activated macrophages and showed greater virulence in an in vivo model of infection. Our results establish that TgIF2K-B is essential for Toxoplasma responses to oxidative stress, which are important for the parasite’s ability to establish persistent infection in its host. IMPORTANCE Toxoplasma gondii is a single-celled parasite that infects nucleated cells of warm-blooded vertebrates, including one-third of the human population. The parasites are not cleared by the immune response and persist in the host by converting into a latent tissue cyst form. Development of tissue cysts can be triggered by cellular stresses, which activate a family of TgIF2 kinases to phosphorylate the eukaryotic translation initiation factor, TgIF2α. Here, we establish that the TgIF2 kinase TgIF2K-B is activated by oxidative stress and is critical for maintaining oxidative balance in the parasite. Depletion of TgIF2K-B alters gene expression, leading to accelerated growth and a diminished ability to convert into tissue cysts. This study establishes that TgIF2K-B is essential for the parasite’s oxidative stress response and its ability to persist in the host as a latent infection.
15
Citation1
0
Save
0

Selective host autophagy is induced during the intracellular parasite Toxoplasma gondii infection controlling amino acid levels

Matthew White et al.Jul 9, 2024
ABSTRACT Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistant to available drugs. For its chronic persistence in the brain, the parasite relies on host cells’ nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustain its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in the accumulation of unfolded protein within the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis. IMPORTANCE Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii , a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host’s autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite’s chronic forms. Significantly, our investigation establishes the crucial role of host endoplasmic reticulum (ER)-phagy in the parasite’s persistence within the host during latent infection.
0
Citation1
0
Save
0

Host autophagy is exploited by the intracellular parasiteToxoplasma gondiito enhance amino acids levels

Matthew White et al.Dec 8, 2023
Toxoplasma gondii, a widespread parasite, has the ability to infect nearly any nucleated cell in warm-blooded vertebrates. It is estimated that around 2 billion people globally have been infected by this pathogen. Although most healthy individuals can effectively control parasite replication, certain parasites may evade the immune response, establishing cysts in the brain that are refractory to the immune system and resistance to available drugs. For its chronic persistence in the brain, the parasite relies on host cells' nutrients, particularly amino acids and lipids. Therefore, understanding how latent parasites persist in the brain is crucial for identifying potential drug targets against chronic forms. While shielded within parasitophorous vacuoles (PVs) or cysts, Toxoplasma exploits the host endoplasmic reticulum (ER) metabolism to sustains its persistence in the brain, resulting in host neurological alterations. In this study, we demonstrate that T. gondii disrupts the host ER homeostasis, resulting in accumulation of unfolded protein with the host ER. The host counters this stress by initiating an autophagic pathway known as ER-phagy, which breaks down unfolded proteins into amino acids, promoting their recycling. Remarkably, the persistence of latent forms in cell culture as well as behavioral changes in mice caused by the latent infection could be successfully reversed by restricting the availability of various amino acids during T. gondi infection. Our findings unveil the underlying mechanisms employed by T. gondii to exploit host ER and lysosomal pathways, enhancing nutrient levels during infection. These insights provide new strategies for the treatment of toxoplasmosis.Intracellular parasites employ several mechanisms to manipulate the cellular environment, enabling them to persist in the host. Toxoplasma gondii , a single-celled parasite, possesses the ability to infect virtually any nucleated cell of warm-blooded vertebrates, including nearly 2 billion people worldwide. Unfortunately, existing treatments and immune responses are not entirely effective in eliminating the chronic persisting forms of the parasite. This study reveals that T. gondii induces the host's autophagic pathway to boost amino acid levels in infected cells. The depletion of amino acids, in turn, influences the persistence of the parasite's chronic forms, resulting in a reduction of neurological alterations caused by chronic infection in mice. Significantly, our investigation establishes the crucial role of host ER-phagy in the parasite's persistence within the host during latent infection.