How cells control their size and maintain size homeostasis is a fundamental open question. Cell-size homeostasis has been discussed in the context of two major paradigms: “sizer,” in which the cell actively monitors its size and triggers the cell cycle once it reaches a critical size, and “timer,” in which the cell attempts to grow for a specific amount of time before division. These paradigms, in conjunction with the “growth law” [1Schaechter M. Maaløe O. Kjeldgaard N.O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium.J. Gen. Microbiol. 1958; 19: 592-606Crossref PubMed Google Scholar] and the quantitative bacterial cell-cycle model [2Cooper S. Helmstetter C.E. Chromosome replication and the division cycle of Escherichia coli B/r.J. Mol. Biol. 1968; 31: 519-540Crossref PubMed Scopus (702) Google Scholar], inspired numerous theoretical models [3Donachie W.D. Relationship between cell size and time of initiation of DNA replication.Nature. 1968; 219: 1077-1079Crossref PubMed Scopus (437) Google Scholar, 4Koch A.L. Schaechter M. A model for statistics of the cell division process.J. Gen. Microbiol. 1962; 29: 435-454Crossref PubMed Scopus (158) Google Scholar, 5Powell E.O. A note on Koch & Schaechter’s hypothesis about growth and fission of bacteria.J. Gen. Microbiol. 1964; 37: 231-249Crossref PubMed Scopus (31) Google Scholar, 6Sompayrac L. Maaloe O. Autorepressor model for control of DNA replication.Nat. New Biol. 1973; 241: 133-135Crossref PubMed Scopus (129) Google Scholar, 7Voorn W.J. Koppes L.J. Grover N.B. Mathematics of cell division in Escherichia coli: comparison between sloppy-size and incremental-size kinetics.Current Topics in Mol. Genet. 1993; 1: 187-194Google Scholar, 8Osella M. Nugent E. Cosentino Lagomarsino M. Concerted control of Escherichia coli cell division.Proc. Natl. Acad. Sci. USA. 2014; 111: 3431-3435Crossref PubMed Scopus (122) Google Scholar, 9Amir A. Cell size regulation in bacteria.Phys. Rev. Lett. 2014; 112: 208102Crossref Scopus (185) Google Scholar] and experimental investigations, from growth [10Son S. Tzur A. Weng Y. Jorgensen P. Kim J. Kirschner M.W. Manalis S.R. Direct observation of mammalian cell growth and size regulation.Nat. Methods. 2012; 9: 910-912Crossref PubMed Scopus (158) Google Scholar, 11Scott M. Gunderson C.W. Mateescu E.M. Zhang Z. Hwa T. Interdependence of cell growth and gene expression: origins and consequences.Science. 2010; 330: 1099-1102Crossref PubMed Scopus (800) Google Scholar] to cell cycle and size control [12Mitchison J. Werner D. Mitosis Facts and Questions: Proceedings in Life Sciences.in: Little M. Paweletz N. Petzelt C. Ponstingl H. Schroeter D. Zimmermann H.-P. Springer, Berlin1977: 1-19Crossref Google Scholar, 13Fantes P.A. Nurse P. Division timing: controls, models and mechanisms.in: John P.C.L. The Cell Cycle. Cambridge University Press, Cambridge1981: 11-34Google Scholar, 14Kafri R. Levy J. Ginzberg M.B. Oh S. Lahav G. Kirschner M.W. Dynamics extracted from fixed cells reveal feedback linking cell growth to cell cycle.Nature. 2013; 494: 480-483Crossref PubMed Scopus (147) Google Scholar, 15Weart R.B. Lee A.H. Chien A.C. Haeusser D.P. Hill N.S. Levin P.A. A metabolic sensor governing cell size in bacteria.Cell. 2007; 130: 335-347Abstract Full Text Full Text PDF PubMed Scopus (263) Google Scholar]. However, experimental evidence involved difficult-to-verify assumptions or population-averaged data, which allowed different interpretations [1Schaechter M. Maaløe O. Kjeldgaard N.O. Dependency on medium and temperature of cell size and chemical composition during balanced grown of Salmonella typhimurium.J. Gen. Microbiol. 1958; 19: 592-606Crossref PubMed Google Scholar, 2Cooper S. Helmstetter C.E. Chromosome replication and the division cycle of Escherichia coli B/r.J. Mol. Biol. 1968; 31: 519-540Crossref PubMed Scopus (702) Google Scholar, 3Donachie W.D. Relationship between cell size and time of initiation of DNA replication.Nature. 1968; 219: 1077-1079Crossref PubMed Scopus (437) Google Scholar, 4Koch A.L. Schaechter M. A model for statistics of the cell division process.J. Gen. Microbiol. 1962; 29: 435-454Crossref PubMed Scopus (158) Google Scholar, 5Powell E.O. A note on Koch & Schaechter’s hypothesis about growth and fission of bacteria.J. Gen. Microbiol. 1964; 37: 231-249Crossref PubMed Scopus (31) Google Scholar, 16Hill N.S. Kadoya R. Chattoraj D.K. Levin P.A. Cell size and the initiation of DNA replication in bacteria.PLoS Genet. 2012; 8: e1002549Crossref PubMed Scopus (97) Google Scholar, 17Wold S. Skarstad K. Steen H.B. Stokke T. Boye E. The initiation mass for DNA replication in Escherichia coli K-12 is dependent on growth rate.EMBO J. 1994; 13: 2097-2102Crossref PubMed Scopus (113) Google Scholar, 18Bates D. Kleckner N. Chromosome and replisome dynamics in E. coli: loss of sister cohesion triggers global chromosome movement and mediates chromosome segregation.Cell. 2005; 121: 899-911Abstract Full Text Full Text PDF PubMed Scopus (249) Google Scholar, 19Schaechter M. Williamson J.P. Hood Jr., J.R. Koch A.L. Growth, cell and nuclear divisions in some bacteria.J. Gen. Microbiol. 1962; 29: 421-434Crossref PubMed Scopus (154) Google Scholar, 20Helmstetter C.E. Cummings D.J. Bacterial synchronization by selection of cells at division.Proc. Natl. Acad. Sci. USA. 1963; 50: 767-774Crossref PubMed Scopus (70) Google Scholar] or limited conclusions [4Koch A.L. Schaechter M. A model for statistics of the cell division process.J. Gen. Microbiol. 1962; 29: 435-454Crossref PubMed Scopus (158) Google Scholar, 5Powell E.O. A note on Koch & Schaechter’s hypothesis about growth and fission of bacteria.J. Gen. Microbiol. 1964; 37: 231-249Crossref PubMed Scopus (31) Google Scholar, 6Sompayrac L. Maaloe O. Autorepressor model for control of DNA replication.Nat. New Biol. 1973; 241: 133-135Crossref PubMed Scopus (129) Google Scholar, 7Voorn W.J. Koppes L.J. Grover N.B. Mathematics of cell division in Escherichia coli: comparison between sloppy-size and incremental-size kinetics.Current Topics in Mol. Genet. 1993; 1: 187-194Google Scholar, 8Osella M. Nugent E. Cosentino Lagomarsino M. Concerted control of Escherichia coli cell division.Proc. Natl. Acad. Sci. USA. 2014; 111: 3431-3435Crossref PubMed Scopus (122) Google Scholar, 9Amir A. Cell size regulation in bacteria.Phys. Rev. Lett. 2014; 112: 208102Crossref Scopus (185) Google Scholar]. In particular, population-averaged data and correlations are inconclusive as the averaging process masks causal effects at the cellular level. In this work, we extended a microfluidic “mother machine” [21Wang P. Robert L. Pelletier J. Dang W.L. Taddei F. Wright A. Jun S. Robust growth of Escherichia coli.Curr. Biol. 2010; 20: 1099-1103Abstract Full Text Full Text PDF PubMed Scopus (589) Google Scholar] and monitored hundreds of thousands of Gram-negative Escherichia coli and Gram-positive Bacillus subtilis cells under a wide range of steady-state growth conditions. Our combined experimental results and quantitative analysis demonstrate that cells add a constant volume each generation, irrespective of their newborn sizes, conclusively supporting the so-called constant Δ model. This model was introduced for E. coli [6Sompayrac L. Maaloe O. Autorepressor model for control of DNA replication.Nat. New Biol. 1973; 241: 133-135Crossref PubMed Scopus (129) Google Scholar, 7Voorn W.J. Koppes L.J. Grover N.B. Mathematics of cell division in Escherichia coli: comparison between sloppy-size and incremental-size kinetics.Current Topics in Mol. Genet. 1993; 1: 187-194Google Scholar] and recently revisited [9Amir A. Cell size regulation in bacteria.Phys. Rev. Lett. 2014; 112: 208102Crossref Scopus (185) Google Scholar], but experimental evidence was limited to correlations. This “adder” principle quantitatively explains experimental data at both the population and single-cell levels, including the origin and the hierarchy of variability in the size-control mechanisms and how cells maintain size homeostasis.