SG
Scott Gratz
Author with expertise in Neuroscience and Genetics of Drosophila Melanogaster
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
2,183
h-index:
11
/
i10-index:
11
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Highly Specific and Efficient CRISPR/Cas9-Catalyzed Homology-Directed Repair in Drosophila

Scott Gratz et al.Jan 30, 2014
Abstract We and others recently demonstrated that the readily programmable CRISPR/Cas9 system can be used to edit the Drosophila genome. However, most applications to date have relied on aberrant DNA repair to stochastically generate frameshifting indels and adoption has been limited by a lack of tools for efficient identification of targeted events. Here we report optimized tools and techniques for expanded application of the CRISPR/Cas9 system in Drosophila through homology-directed repair (HDR) with double-stranded DNA (dsDNA) donor templates that facilitate complex genome engineering through the precise incorporation of large DNA sequences, including screenable markers. Using these donors, we demonstrate the replacement of a gene with exogenous sequences and the generation of a conditional allele. To optimize efficiency and specificity, we generated transgenic flies that express Cas9 in the germline and directly compared HDR and off-target cleavage rates of different approaches for delivering CRISPR components. We also investigated HDR efficiency in a mutant background previously demonstrated to bias DNA repair toward HDR. Finally, we developed a web-based tool that identifies CRISPR target sites and evaluates their potential for off-target cleavage using empirically rooted rules. Overall, we have found that injection of a dsDNA donor and guide RNA-encoding plasmids into vasa-Cas9 flies yields the highest efficiency HDR and that target sites can be selected to avoid off-target mutations. Efficient and specific CRISPR/Cas9-mediated HDR opens the door to a broad array of complex genome modifications and greatly expands the utility of CRISPR technology for Drosophila research.
0
Citation917
0
Save
0

Endogenous tagging reveals differential regulation of Ca2+channels at single AZs during presynaptic homeostatic potentiation and depression

Scott Gratz et al.Dec 28, 2017
Abstract Neurons communicate through Ca 2+ -dependent neurotransmitter release at presynaptic active zones (AZs). Neurotransmitter release properties play a key role in defining information flow in circuits and are tuned during multiple forms of plasticity. Despite their central role in determining neurotransmitter release properties, little is known about how Ca 2+ channel levels are modulated to calibrate synaptic function. We used CRISPR to tag the Drosophila Ca V 2 Ca2+ channel Cacophony (Cac) and investigated the regulation of endogenous Ca 2+ channels during homeostatic plasticity in males in which all endogenous Cac channels are tagged. We found that heterogeneously distributed Cac is highly predictive of neurotransmitter release probability at individual AZs and differentially regulated during opposing forms of presynaptic homeostatic plasticity. Specifically, Cac levels at AZ are increased during chronic and acute presynaptic homeostatic potentiation (PHP), and live imaging during acute expression of PHP reveals proportional Ca 2+ channel accumulation across heterogeneous AZs. In contrast, endogenous Cac levels do not change during presynaptic homeostatic depression (PHD), implying that the reported reduction in Ca 2+ influx during PHD is achieved through functional adaptions to pre-existing Ca 2+ channels. Thus, distinct mechanisms bi-directionally modulate presynaptic Ca 2+ levels to maintain stable synaptic strength in response to diverse challenges, with Ca 2+ channel abundance providing a rapidly tunable substrate for potentiating neurotransmitter release over both acute and chronic timescales.
0
Citation6
0
Save
9

Molecular and organizational diversity intersect to generate functional synaptic heterogeneity within and between excitatory neuronal subtypes

Audrey Medeiros et al.Apr 2, 2023
ABSTRACT Synaptic heterogeneity is a hallmark of complex nervous systems that enables reliable and responsive communication in neural circuits. In this study, we investigated the contributions of voltage-gated calcium channels (VGCCs) to synaptic heterogeneity at two closely related Drosophila glutamatergic motor neurons, one low-and one high-P r . We find that VGCC levels are highly predictive of heterogeneous release probability among individual active zones (AZs) of low-or high-P r inputs, but not between neuronal subtypes. Underlying organizational differences in the AZ cytomatrix, VGCC composition, and a more compact arrangement of VGCCs alter the relationship between VGCC levels and P r at AZs of low-vs. high-P r inputs, explaining this apparent paradox. We further find that the CAST/ELKS AZ scaffolding protein Bruchpilot differentially regulates VGCC levels at low-and high-P r AZs following acute glutamate receptor inhibition, indicating that synapse-specific organization also impacts adaptive plasticity. These findings reveal intersecting levels of molecular and spatial diversity with context-specific effects on heterogeneity in synaptic strength and plasticity.
9
Citation2
0
Save
4

Expanded tRNA methyltransferase family member TRMT9B regulates synaptic growth and function

Caley Hogan et al.Dec 31, 2022
Abstract Nervous system function relies on the formation and function of synaptic connections between neurons. Through a genetic screen in Drosophila for new conserved synaptic genes, we identified CG42261/Fid/ TRMT9B as a negative regulator of synaptogenesis. TRMT9B has been studied for its role as a tumor suppressor in multiple carcinomas and is one of two metazoan homologs of yeast tRNA methyltransferase 9 (Trm9), which methylates tRNA wobble uridines. Members of the expanded family of tRNA methyltransferases are increasingly being associated with neurological disorders and new biochemical functions. Interestingly, whereas Trm9 homolog ALKBH8/CG17807 is ubiquitously expressed, we find that TRMT9B is enriched in the nervous system, including at synapses. However, in the absence of animal models the role of TRMT9B in the nervous system has remained unknown. Here, we generated null alleles of TRMT9B and ALKBH8 , and through liquid chromatography-mass spectrometry find that ALKBH8 is responsible for canonical tRNA wobble uridine methylation under basal conditions. In the nervous system, we find that TRMT9B negatively regulates synaptogenesis through a methyltransferase-dependent mechanism in agreement with our modeling studies. Finally, we find that neurotransmitter release is impaired in TRMT9B mutants. Our findings reveal a role for TRMT9B in regulating synapse formation and function, and highlight the importance of the expanded family of tRNA methyltransferases in the nervous system.
4
Citation1
0
Save
0

The calcium channel subunit α2δ-3 organizes synapses via a novel activity-dependent, autocrine BMP signaling pathway

Kendall Hoover et al.May 16, 2019
Synapses are highly specialized for neurotransmitter signaling, yet activity-dependent growth factor release also plays critical roles at synapses. While efficient neurotransmitter signaling is known to rely on precise apposition of release sites and neurotransmitter receptors, molecular mechanisms enabling high-fidelity growth factor signaling within the synaptic microenvironment remain obscure. Here we show that the auxiliary calcium channel subunit α2δ-3 promotes the function of a novel activity-dependent autocrine BMP signaling pathway at the Drosophila NMJ. α2δ proteins have conserved synaptogenic activity, although how they execute this function has remained elusive. We find that α2δ-3 provides an extracellular scaffold for autocrine BMP signaling, suggesting a new mechanistic framework for understanding the conserved role of α2δs in synapse organization. We further establish a transcriptional requirement for activity-dependent, autocrine BMP signaling in determining synapse density, structure, and function. We propose that activity-dependent, autocrine signals provide neurons with continuous feedback on their activity state and are thus well poised to modulate synapse structure and function.