FM
Fatemeh Mohebbi
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
3
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
23

Community structure and temporal dynamics of SARS-CoV-2 epistatic network allows for early detection of emerging variants with altered phenotypes

Fatemeh Mohebbi et al.Apr 3, 2023
+2
S
A
F
Abstract The emergence of viral variants with altered phenotypes is a public health challenge underscoring the need for advanced evolutionary forecasting methods. Given extensive epistatic interactions within viral genomes and known viral evolutionary history, efficient genomic surveillance necessitates early detection of emerging viral haplotypes rather than commonly targeted single mutations. Haplotype inference, however, is a significantly more challenging problem precluding the use of traditional approaches. Here, using SARS-CoV-2 evolutionary dynamics as a case study, we show that emerging haplotypes with altered transmissibility can be linked to dense communities in coordinated substitution networks, which become discernible significantly earlier than the haplotypes become prevalent. From these insights, we develop a computational framework for inference of viral variants and validate it by successful early detection of known SARS-CoV-2 strains. Our methodology offers greater scalability than phylogenetic lineage tracing and can be applied to any rapidly evolving pathogen with adequate genomic surveillance data.
23
Citation2
0
Save
1

From Alpha to Zeta: Identifying variants and subtypes of SARS-CoV-2 via clustering

Andrew Melnyk et al.Aug 27, 2021
+5
S
F
A
Abstract The availability of millions of SARS-CoV-2 sequences in public databases such as GISAID and EMBL-EBI (UK) allows a detailed study of the evolution, genomic diversity and dynamics of a virus like never before. Here we identify novel variants and sub-types of SARS-CoV-2 by clustering sequences in adapting methods originally designed for haplotyping intra-host viral populations. We asses our results using clustering entropy — the first time it has been used in this context. Our clustering approach reaches lower entropies compared to other methods, and we are able to boost this even further through gap filling and Monte Carlo based entropy minimization. Moreover, our method clearly identifies the well-known Alpha variant in the UK and GISAID datasets, but is also able to detect the much less represented (< 1% of the sequences) Beta (South Africa), Epsilon (California), Gamma and Zeta (Brazil) variants in the GISAID dataset. Finally, we show that each variant identified has high selective fitness, based on the growth rate of its cluster over time. This demonstrates that our clustering approach is a viable alternative for detecting even rare subtypes in very large datasets.
1
Citation1
0
Save
6

SOPHIE: viral outbreak investigation and transmission history reconstruction in a joint phylogenetic and network theory framework

Pavel Skums et al.May 5, 2022
+4
V
F
P
Abstract Genomic epidemiology is now widely used for viral outbreak investigations. Still, this methodology faces many challenges. First, few methods account for intra-host viral diversity. Second, maximum parsimony principle continues to be employed, even though maximum likelihood or Bayesian models are usually more consistent. Third, many methods utilize case-specific data, such as sampling times or infection exposure intervals. This impedes study of persistent infections in vulnerable groups, where such information has a limited use. Finally, most methods implicitly assume that transmission events are independent, while common source outbreaks violate this assumption. We propose a maximum likelihood framework SOPHIE (SOcial and PHilogenetic Investigation of Epidemics) based on integration of phylogenetic and random graph models. It infers transmission networks from viral phylogenies and expected properties of inter-host social networks modelled as random graphs with given expected degree distributions. SOPHIE is scalable, accounts for intra-host diversity and accurately infers transmissions without case-specific epidemiological data. SOPHIE code is freely available at https://github.com/compbel/SOPHIE/