Abstract Hybridization is an important evolutionary mechanism that can enable organisms to adapt to environmental challenges. It has previously been shown that the fungal allodiploid species Verticillium longisporum , causal agent of Verticillium stem striping in rape seed, has originated from at least three independent hybridization events between two haploid Verticillium species. To reveal the impact of genome duplication as a consequence of the hybridization, we studied the genome and transcriptome dynamics upon two independent V. longisporum hybridization events, represented by the hybrid lineages “A1/D1” and “A1/D3”. We show that the V. longisporum genomes are characterized by extensive chromosomal rearrangements, including between parental chromosomal sets. V. longisporum hybrids display signs of evolutionary dynamics that are typically associated with the aftermath of allodiploidization, such as haploidization and a more relaxed gene evolution. Expression patterns of the two sub-genomes within the two hybrid lineages are more similar than those of the shared A1 parent between the two lineages, showing that expression patterns of the parental genomes homogenized within a lineage. However, as genes that display differential parental expression in planta do not typically display the same pattern in vitro , we conclude that sub-genome-specific responses occur in both lineages. Overall, our study uncovers the genomic and transcriptomic plasticity during evolution of the filamentous fungal hybrid V. longisporum and illustrate its adaptive potential. Importance Verticillium is a genus of plant-associated fungi that include a handful of plant pathogens that collectively affect a wide range of hosts. On several occasions, haploid Verticillium species hybridized into the stable allodiploid species Verticillium longisporum , which is, in contrast to haploid Verticillium species, a Brassicaceae specialist. Here, we studied the evolutionary genome and transcriptome dynamics of V. longisporum and the impact of the hybridization. V. longisporum genomes display a mosaic structure due do genomic rearrangements between the parental chromosome sets. Similar to other allopolyploid hybrids, V. longisporum displays an ongoing loss of heterozygosity and a more relaxed gene evolution. Also, differential parental gene expression is observed, with an enrichment for genes that encode secreted proteins. Intriguingly, the majority of these genes displays sub-genome-specific responses under differential growth conditions. In conclusion, hybridization has incited the genomic and transcriptomic plasticity that enables adaptation to environmental changes in a parental allele-specific fashion.