Glioblastomas (GBMs) are tumors of the central nervous system that remain recalcitrant to both standard of care chemo-radiation and immunotherapies. Emerging approaches to treat GBMs include depletion or re-education of innate immune cells including microglia (MG) and macrophages (MACs). Here we show myeloid cell restricted expression of triggering receptor expressed on myeloid cells 2 (TREM2) across low- and high-grade human gliomas. TREM2 expression did not correlate with immunosuppressive pathways, but rather showed strong positive association with phagocytosis markers such as lysozyme (LYZ) and CD163 in gliomas. In line with these observations in patient tumors, Trem2-/- mice did not exhibit improved survival compared to wildtype (WT) mice when implanted with mouse glioma cell lines, unlike observations previously seen in peripheral tumor models. Gene expression profiling revealed pathways related to inflammation, adaptive immunity, and autophagy that were significantly downregulated in tumors from Trem2-/- mice compared to WT tumors. Using ZsGreen-expressing CT-2A orthotopic implants, we found higher tumor antigen engulfment in Trem2+ MACs, MG, and dendritic cells. Our data uncover TREM2 as an important immunomodulator in gliomas and inducing TREM2 mediated phagocytosis can be a potential immunotherapeutic strategy for brain tumors.