DV
Daan Vorselen
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
586
h-index:
14
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
6

Cell surface receptors TREM2, CD14 and integrin αMβ2drive sinking engulfment in phosphatidylserine-mediated phagocytosis

Daan Vorselen et al.Jul 31, 2022
Summary Macrophages phagocytose and thereby eliminate a wide array of extracellular threats, ranging from antibody-coated bacteria to apoptotic cells. Precision modulation of phagocytosis has emerged as a therapeutic strategy across a range of diseases, but is limited by our incomplete understanding of how macrophages recognize, engulf, and respond to different phagocytic targets. Here, we undertook a systematic investigation of the morphological, biophysical and regulatory differences between two major types of phagocytosis: an immunostimulatory form of phagocytosis triggered by antibody-coated targets and an immunosuppressive form triggered by phosphatidylserine (PS)-coated targets. We confirmed classic observations that antibody-mediated phagocytosis involves the extension of thin actin-rich protrusions around the target, but find that PS-mediated phagocytosis involves an unexpected combination of filopodial probing, piecemeal phagocytosis and a distinct ‘sinking’ mechanism of uptake. Using a genome-wide screening approach, we identified genes specifically required for each form of phagocytosis, including actin regulators, cell surface receptors and intracellular signaling molecules. Three cell surface receptors - TREM2, CD14 and integrin α M β 2 - were revealed as essential for PS-mediated uptake. Strikingly, each receptor exhibited a distinct pattern of localization at the plasma membrane and contributed uniquely to the organization of the PS-dependent phagocytic cup. Overall, this work reveals divergent genetic requirements for the morphologically and mechanically distinct forms of PS-mediated and antibody-mediated phagocytosis, thereby informing therapeutic strategies for substrate-specific phagocytosis modulation.
6
Citation6
0
Save
0

Single-cell topographical profiling of the immune synapse reveals a biomechanical signature of cytotoxicity

Miguel Jesús et al.Jun 28, 2024
Immune cells have intensely physical lifestyles characterized by structural plasticity and force exertion. To investigate whether specific immune functions require stereotyped mechanical outputs, we used super-resolution traction force microscopy to compare the immune synapses formed by cytotoxic T cells with contacts formed by other T cell subsets and by macrophages. T cell synapses were globally compressive, which was fundamentally different from the pulling and pinching associated with macrophage phagocytosis. Spectral decomposition of force exertion patterns from each cell type linked cytotoxicity to compressive strength, local protrusiveness, and the induction of complex, asymmetric topography. These features were validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, live imaging of synaptic secretion, and in silico analysis of interfacial distortion. Synapse architecture and force exertion were sensitive to target stiffness and size, suggesting that the mechanical potentiation of killing is biophysically adaptive. We conclude that cellular cytotoxicity and, by implication, other effector responses are supported by specialized patterns of efferent force.
0
Citation1
0
Save
54

Phagocytic “teeth” and myosin-II “jaw” power target constriction during phagocytosis

Daan Vorselen et al.Mar 15, 2021
Abstract Phagocytosis requires rapid actin reorganization and spatially controlled force generation to ingest targets ranging from pathogens to apoptotic cells. How actomyosin activity directs membrane extensions to engulf such diverse targets remains unclear. Here, we combine lattice light-sheet microscopy (LLSM) with microparticle traction force microscopy (MP-TFM) to quantify actin dynamics and subcellular forces during macrophage phagocytosis. We show that spatially localized forces leading to target constriction are prominent during phagocytosis of antibody-opsonized targets. This constriction is largely mediated by Arp2/3-mediated assembly of discrete actin protrusions containing myosin 1e and 1f (“teeth”) that are interconnected in a ring-like organization. Contractile myosin-II activity contributes to late-stage phagocytic force generation and progression, suggesting a specific role in phagocytic cup closure. Observations of partial target eating attempts and sudden target release via a popping mechanism suggest that constriction may be critical for resolving complex in vivo target encounters. Overall, our findings suggest a phagocytic cup-shaping mechanism that is distinct from cytoskeletal remodeling in 2D cell motility and may contribute to mechanosensing and phagocytic plasticity.
54
Citation1
0
Save
6

Force-biased nuclear import sets nuclear-cytoplasmic volumetric coupling by osmosis

Fabrizio Pennacchio et al.Jun 7, 2022
Abstract In eukaryotes, cytoplasmic and nuclear volumes are tightly regulated to ensure proper cell homeostasis. However, the detailed mechanisms underlying nucleus-cytoplasm volumetric coupling remain unknown. Recent evidence supports a primary role of osmotic mechanisms in determining a tight link between nuclear and cytoplasmic volume, but this hypothesis remains largely untested in mammalian cells. We approach the question in single cultured adhering human cells, by jointly measuring cytoplasmic and nuclear volumes, in real time and across cell cycles. Surprisingly, we find that cytoplasmic and nuclear volumes follow different average growth laws: while the cytoplasm grows exponentially, the nucleus grows linearly. Moreover, by combining several experimental perturbations and analyzing a mathematical model including osmotic effects and tension, we conclude that the mechanical forces exerted by the cytoskeleton on the nuclear envelope can strongly affect nucleus-cytoplasm volumetric coupling by biasing nuclear import. Our results unveil how osmo-mechanical equilibrium regulates nuclear size in mammalian cells. One-Sentence Summary Cytoskeletal forces exerted on the nuclear envelope impact on nuclear volume through modulation of force-coupled nucleo-cytoplasmic transport, affecting osmosis.
0

Single-Cell Stress Analysis in Tumoroids.

Rick Mercado et al.Jan 25, 2024
Abstract The reciprocal interplay between cancer cells and their local environment, mediated by mechanical forces, necessitates a deeper experimental understanding. This requires precise quantitative measurements of cellular forces within the intricate three-dimensional context of the extracellular matrix. While methods such as traction-force microscopy and micropillar-array technology have effectively reported on cellular forces in two-dimensional cell culture, extending these techniques to three dimensions has proven exceedingly challenging. In the current study, we introduced a novel approach utilizing soft, elastic hydrogel microparticles, resembling the size of cells, to serve as specific and sensitive traction probes in three-dimensional cell culture of collagen-embedded tumoroids. Our methodology relies on high-resolution detection of microparticle deformations. These deformations are translated into spatially resolved traction fields, reaching a spatial resolution down to 1 µm and thereby detecting traction forces as low as 30 Pa. By integrating this high-resolution traction analysis with three-dimensional cell segmentation, we reconstructed the traction fields originating from individual cells. Our methodology enables us to explore the relationships between cellular characteristics, extracellular traction fields, and cellular responses. We observed that cellular stresses ranged from 10 to 100 Pa, integrating to cellular forces from 0.1 to 100 nN, which correlated with the localization of the cells actin skeleton, and the interaction area that cells developed towards the microparticles. Interestingly, the interaction of cells with inert microparticles appeared to be governed by contact mechanics resembling that of two soft spheres. The methodology presented here not only addresses the challenges of extending traditional stress-probe techniques to three dimensions, but also opens a strategy for the study of specific interactions between cells and the local tumoroid environment in a strive to further understand cell-matrix reciprocity in tissue. Here, we present a novel methodology that permits the measurement of quantitative surface stresses on small, inert, elastic, deformable microparticles. Our approach tackles the involved task of mapping local three-dimensional stress fields within tissue. Our methodology was successfully applied to analyze local stresses within a tumor spheroid. We foresee that our research represents a significant advancement toward comprehending the intricate dynamics of cell-matrix reciprocity within tissue.
0

Superresolved microparticle traction force microscopy reveals subcellular force patterns in immune cell-target interactions

Daan Vorselen et al.Sep 30, 2018
Force exertion is an integral part of cellular behavior. Traction force microscopy (TFM) has been instrumental for studying such forces, providing both spatial and directional force measurements at subcellular resolution. However, the applications of classical TFM are restricted by the typical planar geometry. Here, we develop a particle-based force sensing strategy, specifically designed for studying ligand-dependent cellular interactions. We establish a straightforward batch approach for synthesizing highly uniform, deformable and tunable hydrogel particles, which can also be easily derivatized to trigger specific cellular behavior. The 3D shape of such particles can be resolved with superresolution (<50 nm) accuracy using conventional confocal microscopy. We introduce a computational method that allows inference of surface traction forces with high sensitivity (~10 Pa) directly from the particle shape. We illustrate the potential and flexibility of this approach by revealing surprising subcellular force patterns throughout phagocytic engulfment and measuring dynamics of cytotoxic T cell force exertion in the immunological synapse. This strategy can readily be adapted for studying cellular forces in a wide range of applications.
0

The fluid membrane determines mechanics of red blood cell extracellular vesicles and is softened in hereditary spherocytosis

Daan Vorselen et al.Nov 1, 2017
Extracellular vesicles (EVs) are widely studied regarding their role in cell-to-cell communication and disease, as well as for applications as biomarker or drug delivery vehicle. EVs contain both membrane and intraluminal proteins, affecting their structural properties and thereby likely their functioning. Here, we use atomic force microscopy for the mechanical characterization of red blood cell (RBC) EVs from healthy individuals as well as from a patient with hereditary spherocytosis (HS) due to ankyrin deficiency. We show that the EVs are packed with proteins, yet their response to indentation is similar to that of a fluid lipid vesicle lacking proteins. The bending modulus of RBC EVs of healthy donors is ~15 kbT, agreeing well with the bending modulus of the RBC membrane. Surprisingly, whereas RBCs become more rigid in HS, the excreted vesicles of a patient with this blood disorder have a significantly (~50%) lower bending modulus than donor EVs. These results shed new light on the mechanism and effects of EV budding and may underlie the reported increase in vesiculation and stiffening of RBCs in hereditary spherocytosis patients.