FT
Fella Tamzalit
Author with expertise in Cell Mechanics and Extracellular Matrix Interactions
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(33% Open Access)
Cited by:
709
h-index:
8
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Presence of B Cells in Tertiary Lymphoid Structures Is Associated with a Protective Immunity in Patients with Lung Cancer

Claire Germain et al.Mar 31, 2014
It is now well established that immune responses can take place outside of primary and secondary lymphoid organs. We previously described the presence of tertiary lymphoid structures (TLS) in patients with non-small cell lung cancer (NSCLC) characterized by clusters of mature dendritic cells (DCs) and T cells surrounded by B-cell follicles. We demonstrated that the density of these mature DCs was associated with favorable clinical outcome.To study the role of follicular B cells in TLS and the potential link with a local humoral immune response in patients with NSCLC.The cellular composition of TLS was investigated by immunohistochemistry. Characterization of B-cell subsets was performed by flow cytometry. A retrospective study was conducted in two independent cohorts of patients. Antibody specificity was analyzed by ELISA.Consistent with TLS organization, all stages of B-cell differentiation were detectable in most tumors. Germinal center somatic hypermutation and class switch recombination machineries were activated, associated with the generation of plasma cells. Approximately half of the patients showed antibody reactivity against up to 7 out of the 33 tumor antigens tested. A high density of follicular B cells correlated with long-term survival, both in patients with early-stage NSCLC and with advanced-stage NSCLC treated with chemotherapy. The combination of follicular B cell and mature DC densities allowed the identification of patients with the best clinical outcome.B-cell density represents a new prognostic biomarker for NSCLC patient survival, and makes the link between TLS and a protective B cell-mediated immunity.
0
Citation630
0
Save
0

Single-cell topographical profiling of the immune synapse reveals a biomechanical signature of cytotoxicity

Miguel Jesús et al.Jun 28, 2024
Immune cells have intensely physical lifestyles characterized by structural plasticity and force exertion. To investigate whether specific immune functions require stereotyped mechanical outputs, we used super-resolution traction force microscopy to compare the immune synapses formed by cytotoxic T cells with contacts formed by other T cell subsets and by macrophages. T cell synapses were globally compressive, which was fundamentally different from the pulling and pinching associated with macrophage phagocytosis. Spectral decomposition of force exertion patterns from each cell type linked cytotoxicity to compressive strength, local protrusiveness, and the induction of complex, asymmetric topography. These features were validated as cytotoxic drivers by genetic disruption of cytoskeletal regulators, live imaging of synaptic secretion, and in silico analysis of interfacial distortion. Synapse architecture and force exertion were sensitive to target stiffness and size, suggesting that the mechanical potentiation of killing is biophysically adaptive. We conclude that cellular cytotoxicity and, by implication, other effector responses are supported by specialized patterns of efferent force.
0
Citation1
0
Save
0

Interfacial actin protrusions mechanically potentiate killing by cytotoxic T cells

Fella Tamzalit et al.Oct 14, 2018
Cytotoxic T lymphocytes (CTLs) kill by forming immunological synapses with target cells and secreting toxic proteases and the pore forming protein perforin into the intercellular space. Immunological synapses are highly dynamic structures that potentiate perforin activity by applying mechanical force against the target cell. Here, we employed high-resolution imaging and microfabrication to investigate how CTLs exert synaptic forces and coordinate their mechanical output with perforin secretion. Using micropatterned stimulatory substrates that enable synapse growth in three dimensions, we found that perforin release occurs at the base of actin-rich protrusions that extend from central and intermediate locations within the synapse. These protrusions, which depended on the cytoskeletal regulator WASP and the Arp2/3 actin nucleation complex, were required for synaptic force exertion and efficient killing. They also mediated physical distortion of the target cell surface during CTL-target cell interactions. Our results reveal the mechanical basis of cellular cytotoxicity and highlight the functional importance of dynamic, three-dimensional architecture in immune cell-cell interfaces.