JV
Jan Vanderborght
Author with expertise in Plant Nutrient Uptake and Signaling Pathways
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
6
h-index:
50
/
i10-index:
151
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

Linking rhizosphere processes across scales: Opinion

Andrea Schnepf et al.Jul 10, 2021
Abstract Purpose Simultaneously interacting small-scale rhizosphere processes determine emergent plant-scale behaviour, including growth, transpiration, nutrient uptake, soil carbon storage and transformation by microorganisms. Current advances in modelling and experimental methods open the path to unravel and link those processes. Methods We present a series of examples of state-of-the art simulations addressing this multi-scale, multi-process problem from a modelling point of view, as well as from the point of view of integrating newly available rhizosphere data and images. Results Each example includes a model that links scales and experimental data to set-up simulations that explain and predict spatial and temporal distribution of rhizodeposition as driven by root architecture development, soil structure, presence of root hairs, soil water content and distribution of soil water. Furthermore, two models explicitly simulate the impact of the rhizodeposits on plant nutrient uptake and soil microbial activity, respectively. This exemplifies the currently available state of the art modelling tools in this field: image-based modelling, pore-scale modelling, continuum scale modelling and functional-structural plant modelling. We further show how to link the pore scale to the continuum scale by homogenisation or by deriving effective physical parameters like viscosity from nano-scale chemical properties. Conclusion Modelling allows to integrate and make use of new experimental data across different rhizosphere processes (and thus across different disciplines) and scales. Described models are tools to test hypotheses and consequently improve our mechanistic understanding of how rhizosphere processes impact plant-scale behaviour. Linking multiple scales and processes is the logical next step for future research.
2
Paper
Citation4
0
Save
5

Simulating rhizodeposition patterns around growing and exuding root systems

Magdalena Landl et al.Feb 27, 2021
1 Abstract In this study, we developed a novel model approach to compute the spatio-temporal distribution patterns of rhizodeposits around growing root systems in three dimensions. This model approach allows us for the first time to study the evolution of rhizodeposition patterns around complex three-dimensional root systems. Root systems were generated using the root architecture model CPlantBox. The concentration of rhizodeposits at a given location in the soil domain was computed analytically. To simulate the spread of rhizodeposits in the soil, we considered rhizodeposit release from the roots, rhizodeposit diffusion into the soil, rhizodeposit sorption to soil particles, and rhizodeposit degradation by microorganisms. To demonstrate the capabilities of our new model approach, we performed simulations for the two example rhizodeposits mucilage and cit-rate and the example root system Vicia faba . The rhizodeposition model was parameterized using values from the literature. Our simulations showed that the rhizosphere soil volume with rhizodeposit concentrations above a defined threshold value (i.e., the rhizodeposit hotspot volume), exhibited a maximum at intermediate root growth rates. Root branching allowed the rhizospheres of individual roots to overlap, resulting in a greater volume of rhizodeposit hotspots. This was particularly important in the case of citrate, where overlap of rhizodeposition zones accounted for more than half of the total rhizodeposit hotspot volumes. Coupling a root architecture model with a rhizodeposition model allowed us to get a better understanding of the influence of root architecture as well as rhizodeposit properties on the evolution of the spatio-temporal distribution patterns of rhizodeposits around growing root systems.
5
Citation2
0
Save
1

Development and calibration of the FSPM CPlantBox to represent the interactions between water and carbon fluxes in the soil-plant-atmosphere continuum

Mona Giraud et al.Apr 19, 2023
Abstract A plant’s development is strongly linked to the water and carbon flows in the soil-plant-atmosphere continuum. Expected climate shifts will alter the water and carbon cycles and will affect plant phenotypes. Comprehensive models which simulate mechanistically and dynamically the feedback loops between a plant’s three-dimensional development and the water and carbon flows are useful tools to evaluate the sustainability of genotype-environment-management combinations which do not yet exist. In this study, we present the latest version of the open-source three-dimensional Functional-Structural Plant Model CPlantBox with PiafMunch and DuMu x coupling. We simulated semi-mechanistically the development of generic C3 monocots from 10 to 25 days after sowing and undergoing an atmospheric dry spell of one week (no precipitation). We compared the results for dry spells starting on different days (day 11 or 18) and with different climates (wetter and colder against drier and warmer atmospheric and initial soil conditions). Compared with the wetter and colder climate, the dry spell with the drier and warmer climate led to a lower instantaneous water use efficiency. Moreover, the lower symplasm turgor for the drier and warmer climate limited the growth, which made the sucrose available for other processes, such as maintenance respiration. Both of these effects were stronger for the later dry spell compared with the early dry spell under the drier and warmer climate. We could thus use CPlantBox to simulate diverging emerging processes (like carbon partitioning) defining the plants’ phenotypic plasticity response to their environment.
1
0
Save
0

Root hydraulic properties: an exploration of their variability across scales

Juan Cabrera et al.Jan 1, 2023
Root hydraulic properties are key physiological traits that determine the capacity of root systems to take up water, at a specific evaporative demand. They can strongly vary among species, cultivars or even within the same genotype, but a systematic analysis of their variation across plant functional types (PFTs) is still missing. Here, we reviewed published empirical studies on root hydraulic properties at the segment-, individual root-, or root system scale and determined its variability and the main factors contributing to it. We observed an extremely large range of variation (of orders of magnitude) in root hydraulic properties, but this was not caused by systematic differences among PFTs. Rather, the (combined) effect of factors such as root system age, driving force used for measurement, or stress treatments shaped the results. We found a significant decrease in root hydraulic properties under stress conditions (drought and aquaporin inhibition) and a significant effect of the driving force used for measurement (hydrostatic or osmotic gradients). Furthermore, whole root system conductance increased significantly with root system age across several crop species, causing very large variation in the data (> 2 orders of magnitude). Interestingly, this relationship showed an asymptotic shape, with a steep increase during the first days of growth and a flattening out at later stages of development. This behaviour was also observed in simulations with computational plant models, suggesting common patterns across studies and species. These findings provide better understanding of the main causes of root hydraulic properties variations observed across empirical studies. They also open the door to better representation of hydraulic processes across multiple plant functional types and at large scales. All data collected in our analysis has been aggregated into an open access database (https://roothydraulic-properties.shinyapps.io/database/), fostering scientific exchange.
0

CPlantBox, a whole plant modeling framework for the simulation of water and carbon related processes

Xiaoran Zhou et al.Oct 24, 2019
The interaction between carbon and flows within the plant is at the center of most growth and developmental processes. Understanding how these fluxes influence each other, and how they respond to heterogeneous environmental conditions, is important to answer diverse questions in forest, agriculture and environmental sciences. However, due to the high complexity of the plant-environment system, specific tools are needed to perform such quantitative analyses. Here we present CPlantBox, full plant modelling framework based on the root system model CRootBox. CPlantbox is capable of simulating the growth and development of a variety of plant architectures (root and shoot). In addition, the flexibility of CPlantBox enables its coupling with external modeling tools. Here, we connected it to an existing mechanistic model of water and carbon flows in the plant, PiafMunch. The usefulness of the CPlantBox modelling framework is exemplified in four case studies. Firstly, we illustrate the range of plant structures that can be simulated using CPlantBox. In the second example, we simulated diurnal carbon and water flows, which corroborates published experimental data. In the third case study, we simulated impacts of heterogeneous environment on carbon and water flows. Finally, we showed that our modelling framework can be used to fit phloem pressure and flow speed to (published) experimental data. The CPlantBox modelling framework is open-source, highly accessible and flexible. Its aim is to provide a quantitative framework for the understanding of plant-environment interaction.
0

Water and phosphorus uptake by upland rice root systems unraveled under multiple scenarios: linking a 3D soil-root model and data

Trung Hieu et al.Jan 27, 2020
Background and aims: Upland rice is often grown where water and phosphorus (P) are limited and these two factors interact on P bioavailability. To better understand this interaction, mechanistic models representing small-scale nutrient gradients and water dynamics in the rhizosphere of full-grown root systems are needed. Methods: Rice was grown in large columns using a P-deficient soil at three different P supplies in the topsoil (deficient, suboptimal, non-limiting) in combination with two water regimes (field capacity versus drying periods). Root architectural parameters and P uptake were determined. Using a multiscale model of water and nutrient uptake, in-silico experiments were conducted by mimicking similar P and water treatments. First, 3D root systems were reconstructed by calibrating an architecure model with observed phenological root data, such as nodal root number, lateral types, interbranch distance, root diameters, and root biomass allocation along depth. Secondly, the multiscale model was informed with these 3D root architectures and the actual transpiration rates. Finally, water and P uptake were simulated. Key results: The plant P uptake increased over threefold by increasing P and water supply, and drying periods reduced P uptake at high but not at low P supply. Root architecture was significantly affected by the treatments. Without calibration, simulation results adequately predicted P uptake, including the different effects of drying periods on P uptake at different P levels. However, P uptake was underestimated under P deficiency, a process likely related to an underestimated affinity of P uptake transporters in the roots. Both types of laterals (i.e. S- and L-type) are shown to be highly important for both water and P uptake, and the relative contribution of each type depend on both soil P availability and water dynamics. Key drivers in P uptake are growing root tips and the distribution of laterals. Conclusions: This model-data integration demonstrates how multiple co-occurring single root phene responses to environmental stressors contribute to the development of a more efficient root system. Further model improvements such as the use of Michaelis constants from buffered systems and the inclusion of mycorrhizal infections and exudates are proposed.