JT
Justin Taraska
Author with expertise in Mechanisms of Intracellular Membrane Trafficking
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
21
(71% Open Access)
Cited by:
299
h-index:
31
/
i10-index:
47
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Genome-edited human stem cells expressing fluorescently labeled endocytic markers allow quantitative analysis of clathrin-mediated endocytosis during differentiation

Daphné Dambournet et al.Jul 6, 2018
We developed a general approach for investigation of how cellular processes become adapted for specific cell types during differentiation. Previous studies reported substantial differences in the morphology and dynamics of clathrin-mediated endocytosis (CME) sites. However, associating specific CME properties with distinct differentiated cell types and determining how these properties are developmentally specified during differentiation have been elusive. Using genome-edited human embryonic stem cells, and isogenic fibroblasts and neuronal progenitor cells derived from them, we established by live-cell imaging and platinum replica transmission electron microscopy that CME site dynamics and ultrastructure on the plasma membrane are precisely reprogrammed during differentiation. Expression levels for the endocytic adaptor protein AP2μ2 were found to underlie dramatic changes in CME dynamics and structure. Additionally, CME dependency on actin assembly and phosphoinositide-3 kinase activity are distinct for each cell type. Collectively, our results demonstrate that key CME properties are reprogrammed during differentiation at least in part through AP2μ2 expression regulation.
0
Citation65
0
Save
0

Focal adhesion-generated cues in extracellular matrix regulate cell migration by local induction of clathrin-coated plaques

Delia Bucher et al.Dec 11, 2018
Abstract Clathrin is a unique scaffold protein, which forms polyhedral lattices with flat and curved morphology. The function of curved clathrin-coated pits in forming endocytic structures is well studied. On the contrary, the role of large flat clathrin arrays, called clathrin-coated plaques, remains ambiguous. Previous studies suggested an involvement of plaques in cell adhesion. However, the molecular origin leading to their formation and their precise functions remain to be determined. Here, we study the origin and function of clathrin-coated plaques during cell migration. We revealed that plaque formation is intimately linked to extracellular matrix (ECM) modification by focal adhesions (FAs). We show that in migrating cells, FAs digest the ECM creating extracellular topographical cues that dictate the future location of clathrin-coated plaques. We identify Eps15 and Eps15R as key regulators for the formation of clathrin-coated plaques at locally remodelled ECM sites. Using a genetic silencing approach to abrogate plaque formation and 3D-micropatterns to spatially control the location of clathrin-coated plaques, we could directly correlate cell migration directionality with the formation of clathrin-coated plaques and their ability to recognize extracellular topographical cues. We here define the molecular mechanism regulating the functional interplay between FAs and plaques and propose that clathrin-coated plaques act as regulators of cell migration promoting contact guidance-mediated collective migration in a cell-to-cell contact independent manner.
0
Citation9
0
Save
0

Local monomer levels and established filaments potentiate non-muscle myosin 2 assembly

Melissa Quintanilla et al.Feb 14, 2024
The ability to dynamically assemble contractile networks is required throughout cell physiology, yet direct biophysical mechanisms regulating non-muscle myosin 2 filament assembly in living cells are lacking. Here, we use a suite of dynamic, quantitative imaging approaches to identify deterministic factors that drive myosin filament appearance and amplification. We find that actin dynamics regulate myosin assembly, but that the static actin architecture plays a less clear role. Instead, remodeling of actin networks modulates the local myosin monomer levels and facilitates assembly through myosin:myosin-driven interactions. Using optogenetically controlled myosin, we demonstrate that locally concentrating myosin is sufficient to both form filaments and jump-start filament amplification and partitioning. By counting myosin monomers within filaments, we demonstrate a myosin-facilitated assembly process that establishes filament stacks prior to partitioning into clusters that feed higher-order networks. Together, these findings establish the biophysical mechanisms regulating the assembly of non-muscle contractile structures that are ubiquitous throughout cell biology.
0
Citation6
0
Save
1

The molecular organization of flat and curved caveolae indicates bendable structural units at the plasma membrane

Claudia Matthaeus et al.Mar 31, 2022
Abstract Caveolae are small coated inner plasma membrane invaginations found in many cell types. Their diverse functions span from endocytosis to signaling, regulating key cellular processes including lipid uptake, pathogen entry, and membrane tension. Caveolae undergo shape changes from flat to curved. It is unclear which proteins regulate this process. To address this gap, we studied the shapes of caveolae with platinum replica electron microscopy in six common cell types. Next, we developed a correlative multi-color stimulated emission depletion (STED) fluorescence and platinum replica EM imaging (CLEM) method to image caveolae-associated proteins at caveolae of different shapes at the nanoscale. Caveolins and cavins were found at all caveolae, independent of their curvature. EHD2, a classic caveolar neck protein, was strongly detected at both curved and flat caveolae. Both pacsin2 and the regulator EHBP1 were found only at a subset of caveolae. Pacsin2 was localized primarily to areas surrounding flat caveolae, whereas EHBP1 was mostly detected at spheres. Contrary to classic models, dynamin was absent from caveolae and localized only to clathrin-coated structures. Cells lacking dynamin showed no substantial changes to caveolae, suggesting that dynamin is not directly involved in caveolae curvature. Together, we provide a mechanistic map for the molecular control of caveolae shape by eight of the major caveolae-associated coat and regulatory proteins. We propose a model where caveolins, cavins, and EHD2 assemble as a cohesive structural unit regulated by more intermittent associations with pacsin2 and EHBP1. These complexes can flatten and curve, capturing membrane to enable lipid traffic and changes to the surface area of the cell.
1
Citation3
0
Save
0

Crosstalk of growth factor receptors at plasma membrane clathrin-coated sites

Marco Alfonzo‐Méndez et al.May 18, 2024
Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, exocytic, and endocytic proteins. Yet, the composition and control of these nanoscale complexes in response to external cues remain unclear. Here, we use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures across the plasma membrane of human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with ligands. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces a capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR individually with drugs prevents the recruitment of both EGFR and FGFR. Our data reveals novel crosstalk between multiple unrelated receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.
0
Citation1
0
Save
45

A conformational switch in clathrin light chain regulates lattice structure and endocytosis at the plasma membrane of mammalian cells

Kazuki Obashi et al.Mar 21, 2022
Abstract The conformations of endocytic proteins and their interactions are key regulators of clathrin-mediated endocytosis. Three clathrin light chains (CLC), along with three clathrin heavy chains, assemble to form single clathrin triskelia that link into a geometric lattice that curves to drive endocytosis. Conformational changes in CLC have been shown to regulate triskelia assembly in solution, yet the nature of these structural changes, and their effects on lattice growth, curvature, and endocytosis in cells are unclear. Here, we develop a correlative fluorescence resonance energy transfer (FRET) and platinum replica electron microscopy method, named FRET-CLEM. With FRET-CLEM, we measure conformational changes in proteins at thousands of individual morphologically distinct clathrin-coated structures across cell membranes. We find that the N-terminus of CLC moves away from the plasma membrane and triskelia vertex as lattices curve. Preventing this conformational switch with acute chemical tools inside cells increased clathrin structure sizes and inhibited endocytosis. Therefore, a specific conformational switch in CLC regulates lattice curvature and endocytosis in mammalian cells.
45
Citation1
0
Save
45

Adhesion energy controls lipid binding-mediated endocytosis

Raluca Groza et al.Jun 25, 2023
Abstract Several bacterial toxins and viruses can deform membranes through multivalent binding to lipids for clathrin-independent endocytosis. However, it remains unclear, how membrane deformation and endocytic internalization are mechanistically linked. Here we show that many lipid-binding virions induce membrane deformation and clathrin-independent endocytosis, suggesting a common mechanism based on multivalent lipid binding by globular particles. We create a synthetic cellular system consisting of a lipid-anchored receptor in the form of GPI-anchored anti-GFP nanobodies and a multivalent globular binder exposing 180 regularly-spaced GFP molecules on its surface. We show that these globular, 40 nm diameter, particles bind to cells expressing the receptor, deform the plasma membrane upon adhesion and become endocytosed in a clathrin-independent manner. We explore the role of the membrane adhesion energy in endocytosis by using receptors with affinities varying over 7 orders of magnitude. Using this system, we find that once a threshold in adhesion energy is overcome to allow for membrane deformation, endocytosis occurs reliably. Multivalent, binding-induced membrane deformation by globular binders is thus sufficient for internalization to occur and we suggest it is the common, purely biophysical mechanism for lipid-binding mediated endocytosis of toxins and pathogens.
45
Citation1
0
Save
Load More