DE
Denis Engemann
Author with expertise in Brain-Computer Interfaces in Neuroscience and Medicine
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
23
(70% Open Access)
Cited by:
5,472
h-index:
25
/
i10-index:
41
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

MEG and EEG data analysis with MNE-Python

Alexandre Gramfort et al.Jan 1, 2013
Magnetoencephalography and electroencephalography (M/EEG) measure the weakelectromagnetic signals generated by neuronal activity in the brain. Using thesesignals to characterize and locate neural activation in the brain is achallenge that requires expertise in physics, signalprocessing, statistics, and numerical methods. As part of the MNE softwaresuite, MNE-Python is an open-sourcesoftware package that addresses this challenge by providingstate-of-the-art algorithms implemented in Python that cover multiple methods of data preprocessing, source localization, statistical analysis, and estimation offunctional connectivity between distributed brain regions.All algorithms and utility functions are implemented in a consistent manner with well-documented interfaces, enabling users to create M/EEG data analysispipelines by writing Python scripts.Moreover, MNE-Python is tightly integrated with the core Python libraries for scientificcomptutation (Numpy, Scipy) and visualization (matplotlib and Mayavi), as wellas the greater neuroimaging ecosystem in Python via the Nibabel package. The code is provided under the new BSD licenseallowing code reuse, even in commercial products. Although MNE-Python has onlybeen under heavy development for a couple of years, it has rapidly evolved withexpanded analysis capabilities and pedagogical tutorials because multiple labs have collaborated during code development to help share best practices.MNE-Python also gives easy access to preprocessed datasets,helping users to get started quickly and facilitating reproducibility ofmethods by other researchers. Full documentation, including dozens ofexamples, is available at http://martinos.org/mne.
0

Autoreject: Automated artifact rejection for MEG and EEG data

Mainak Jas et al.Jun 21, 2017
We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors. Depending on the number of bad sensors, the trial is then repaired by interpolation or by excluding it from subsequent analysis. All steps of the algorithm are fully automated thus lending itself to the name Autoreject. In order to assess the practical significance of the algorithm, we conducted extensive validation and comparisons with state-of-the-art methods on four public datasets containing MEG and EEG recordings from more than 200 subjects. The comparisons include purely qualitative efforts as well as quantitatively benchmarking against human supervised and semi-automated preprocessing pipelines. The algorithm allowed us to automate the preprocessing of MEG data from the Human Connectome Project (HCP) going up to the computation of the evoked responses. The automated nature of our method minimizes the burden of human inspection, hence supporting scalability and reliability demanded by data analysis in modern neuroscience.
0

Robust EEG-based cross-site and cross-protocol classification of states of consciousness

Denis Engemann et al.Sep 5, 2018
Determining the state of consciousness in patients with disorders of consciousness is a challenging practical and theoretical problem. Recent findings suggest that multiple markers of brain activity extracted from the EEG may index the state of consciousness in the human brain. Furthermore, machine learning has been found to optimize their capacity to discriminate different states of consciousness in clinical practice. However, it is unknown how dependable these EEG markers are in the face of signal variability because of different EEG configurations, EEG protocols and subpopulations from different centres encountered in practice. In this study we analysed 327 recordings of patients with disorders of consciousness (148 unresponsive wakefulness syndrome and 179 minimally conscious state) and 66 healthy controls obtained in two independent research centres (Paris Pitié-Salpêtrière and Liège). We first show that a non-parametric classifier based on ensembles of decision trees provides robust out-of-sample performance on unseen data with a predictive area under the curve (AUC) of ~0.77 that was only marginally affected when using alternative EEG configurations (different numbers and positions of sensors, numbers of epochs, average AUC = 0.750 ± 0.014). In a second step, we observed that classifiers based on multiple as well as single EEG features generalize to recordings obtained from different patient cohorts, EEG protocols and different centres. However, the multivariate model always performed best with a predictive AUC of 0.73 for generalization from Paris 1 to Paris 2 datasets, and an AUC of 0.78 from Paris to Liège datasets. Using simulations, we subsequently demonstrate that multivariate pattern classification has a decisive performance advantage over univariate classification as the stability of EEG features decreases, as different EEG configurations are used for feature-extraction or as noise is added. Moreover, we show that the generalization performance from Paris to Liège remains stable even if up to 20% of the diagnostic labels are randomly flipped. Finally, consistent with recent literature, analysis of the learned decision rules of our classifier suggested that markers related to dynamic fluctuations in theta and alpha frequency bands carried independent information and were most influential. Our findings demonstrate that EEG markers of consciousness can be reliably, economically and automatically identified with machine learning in various clinical and acquisition contexts.
0

Segregation of the human medial prefrontal cortex in social cognition

Danilo Bzdok et al.Jan 1, 2013
While the human medial prefrontal cortex (mPFC) is widely believed to be a key node of neural networks relevant for socio-emotional processing, its functional subspecialization is still poorly understood. We thus revisited the often assumed differentiation of the mPFC in social cognition along its ventral-dorsal axis. Our neuroinformatic analysis was based on a neuroimaging meta-analysis of perspective-taking that yielded two separate clusters in the ventral and dorsal mPFC, respectively. We determined each seed region's brain-wide interaction pattern by two complementary measures of functional connectivity: co-activation across a wide range of neuroimaging studies archived in the BrainMap database and correlated signal fluctuations during unconstrained ("resting") cognition. Furthermore, we characterized the functions associated with these two regions using the BrainMap database. Across methods, the ventral mPFC was more strongly connected with the nucleus accumbens, hippocampus, posterior cingulate cortex, and retrosplenial cortex, while the dorsal mPFC was more strongly connected with the inferior frontal gyrus, temporo-parietal junction, and middle temporal gyrus. Further, the ventral mPFC was selectively associated with action execution, olfaction, and reward related tasks, while the dorsal mPFC was selectively associated with perspective-taking and episodic memory retrieval. The ventral mPFC is therefore predominantly involved in sensory-driven, approach/avoidance-modulating, and evaluation-related processing, whereas the dorsal mPFC is predominantly involved in internally driven, memory-informed, and metacognition-related processing in social cognition.
0

Prediction and inference diverge in biomedicine: Simulations and real-world data

Danilo Bzdok et al.May 21, 2018
Abstract In the 20 th century many advances in biological knowledge and evidence-based medicine were supported by p-values and accompanying methods. In the beginning 21 st century, ambitions towards precision medicine put a premium on detailed predictions for single individuals. The shift causes tension between traditional methods used to infer statistically significant group differences and burgeoning machine-learning tools suited to forecast an individual’s future. This comparison applies the linear model for identifying significant contributing variables and for finding the most predictive variable sets. In systematic data simulations and common medical datasets, we explored how statistical inference and pattern recognition can agree and diverge. Across analysis scenarios, even small predictive performances typically coincided with finding underlying significant statistical relationships. However, even statistically strong findings with very low p-values shed little light on their value for achieving accurate prediction in the same dataset. More complete understanding of different ways to define ‘important’ associations is a prerequisite for reproducible research findings that can serve to personalize clinical care.
0

Semantic coding in the occipital cortex of early blind individuals

Sami Abboud et al.Feb 3, 2019
Abstract The visual cortex of early blind individuals is reorganized to support cognitive functions distinct from vision. Research suggests that one such prominent function is language. However, it is unknown whether the visual cortex of blind individuals codes for word meaning. We addressed this question by comparing neuronal activity evoked by a semantic decision task, using magnetoencephalography (MEG), between 12 early blind and 14 sighted participants otherwise comparable with regard to gender, age and education. We found that average brain responses to thousands of auditory word stimuli followed similar time courses in blind and sighted participants. However, in blind participants only, we found a sustained enhancement of activity in the visual cortex. Moreover, across the whole brain, we found an effect of semantic category from about 400 ms after word onset. Strikingly, in blind participants, semantic categories were discriminable starting 580 ms after word onset from signal captured by sensors sensitive to the visual cortex. We replicated the analyses in time windows locked to stimulus onset and behavioral response, using both classical hypothesis testing and machine learning for single-trial classification. Semantic decisions were well classified in all participants (AUC ∼ 0.60), but generalization capacity across participants was found reduced in the blind group due to a larger variability of discriminative patterns. In conclusion, our findings suggest that brain plasticity reorganizes the semantic system of blind individuals, and extends semantic computation into the visual cortex.
0

Combined behavioral and electrophysiological evidence for a direct cortical effect of prefrontal tDCS on disorders of consciousness

Bertrand Hermann et al.Apr 18, 2019
ABSTRACT Severe brain injuries can lead to long-lasting disorders of consciousness (DoC) such as vegetative state/unresponsive wakefulness syndrome (VS/UWS) or minimally conscious state (MCS). While behavioral assessment remains the gold standard to determine conscious state, EEG has proven to be a promising complementary tool to monitor the effect of new therapeutics. Encouraging results have been obtained with invasive electrical stimulation of the brain, and recent studies identified transcranial direct current stimulation (tDCS) as an effective approach in randomized controlled trials. This non-invasive and inexpensive tool may turn out to be the preferred treatment option. However, its mechanisms of action and physiological effects on brain activity remain unclear and debated. Here, we stimulated 60 DoC patients with the anode placed over left-dorsolateral prefrontal cortex in a prospective open-label study. Clinical behavioral assessment improved in twelve patients (20%) and none deteriorated. This behavioral response after tDCS coincided with an enhancement of putative EEG markers of consciousness: in comparison with non-responders, responders showed increases of power and long-range cortico-cortical functional connectivity in the theta-alpha band, and a larger and more sustained P300 suggesting improved conscious access to auditory novelty. The EEG changes correlated with electric fields strengths in prefrontal cortices, and no correlation was found on the scalp. Taken together, this prospective intervention in a large cohort of DoC patients strengthens the validity of the proposed EEG signatures of consciousness, and is suggestive of a direct causal effect of tDCS on consciousness.
0

Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging

Franziskus Liem et al.Jun 12, 2020
Cognitive decline occurs in healthy and pathological aging, and both may be preceded by subtle changes in the brain — offering a basis for cognitive predictions. Previous work has largely focused on predicting a diagnostic label from structural brain imaging. Our study broadens the scope of applications to cognitive decline in healthy aging by predicting future decline as a continuous trajectory, rather than a diagnostic label. Furthermore, since brain structure as well as function changes in aging, it is reasonable to expect predictive gains when using multiple brain imaging modalities. Here, we tested whether baseline multimodal neuroimaging data improve the prediction of future cognitive decline in healthy and pathological aging. Non-brain data (including demographics and clinical and neuropsychological scores) were combined with structural and functional connectivity MRI data from the OASIS-3 project (N = 662; age = 46 – 96y). The combined input data was entered into cross-validated multi-target random forest models to predict future cognitive decline (measured by the Clinical Dementia Rating and the Mini-Mental State Examination), on average 5.8y into the future. The analysis was preregistered and all analysis code is publicly available. We found that combining non-brain with structural data improved the continuous prediction of future cognitive decline (best test-set performance: R 2 = 0.42) and that cognitive performance, daily functioning, and subcortical volume drove the performance of our model. In contrast, including functional connectivity did not improve predictive accuracy. In the future, the prognosis of age-related cognitive decline may enable earlier and more effective cognitive, pharmacological, and behavioral interventions to be tailored to the individual.
Load More