TP
Tan Pham
Author with expertise in Management of Valvular Heart Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
416
h-index:
11
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sortilin mediates vascular calcification via its recruitment into extracellular vesicles

Claudia Goettsch et al.Mar 6, 2016
Vascular calcification is a common feature of major cardiovascular diseases. Extracellular vesicles participate in the formation of microcalcifications that are implicated in atherosclerotic plaque rupture; however, the mechanisms that regulate formation of calcifying extracellular vesicles remain obscure. Here, we have demonstrated that sortilin is a key regulator of smooth muscle cell (SMC) calcification via its recruitment to extracellular vesicles. Sortilin localized to calcifying vessels in human and mouse atheromata and participated in formation of microcalcifications in SMC culture. Sortilin regulated the loading of the calcification protein tissue nonspecific alkaline phosphatase (TNAP) into extracellular vesicles, thereby conferring its calcification potential. Furthermore, SMC calcification required Rab11-dependent trafficking and FAM20C/casein kinase 2-dependent C-terminal phosphorylation of sortilin. In a murine model, Sort1-deficiency reduced arterial calcification but did not affect bone mineralization. Additionally, transfer of sortilin-deficient BM cells to irradiated atherosclerotic mice did not affect vascular calcification, indicating a primary role of SMC-derived sortilin. Together, the results of this study identify sortilin phosphorylation as a potential therapeutic target for ectopic calcification/microcalcification and may clarify the mechanism that underlies the genetic association between the SORT1 gene locus and coronary artery calcification.
0
Citation213
0
Save
0

Spatiotemporal Multi-Omics Mapping Generates a Molecular Atlas of the Aortic Valve and Reveals Networks Driving Disease

Florian Schlotter et al.Mar 27, 2018
Background: No pharmacological therapy exists for calcific aortic valve disease (CAVD), which confers a dismal prognosis without invasive valve replacement. The search for therapeutics and early diagnostics is challenging because CAVD presents in multiple pathological stages. Moreover, it occurs in the context of a complex, multi-layered tissue architecture; a rich and abundant extracellular matrix phenotype; and a unique, highly plastic, and multipotent resident cell population. Methods: A total of 25 human stenotic aortic valves obtained from valve replacement surgeries were analyzed by multiple modalities, including transcriptomics and global unlabeled and label-based tandem-mass-tagged proteomics. Segmentation of valves into disease stage–specific samples was guided by near-infrared molecular imaging, and anatomic layer-specificity was facilitated by laser capture microdissection. Side-specific cell cultures were subjected to multiple calcifying stimuli, and their calcification potential and basal/stimulated proteomes were evaluated. Molecular (protein–protein) interaction networks were built, and their central proteins and disease associations were identified. Results: Global transcriptional and protein expression signatures differed between the nondiseased, fibrotic, and calcific stages of CAVD. Anatomic aortic valve microlayers exhibited unique proteome profiles that were maintained throughout disease progression and identified glial fibrillary acidic protein as a specific marker of valvular interstitial cells from the spongiosa layer. CAVD disease progression was marked by an emergence of smooth muscle cell activation, inflammation, and calcification-related pathways. Proteins overrepresented in the disease-prone fibrosa are functionally annotated to fibrosis and calcification pathways, and we found that in vitro, fibrosa-derived valvular interstitial cells demonstrated greater calcification potential than those from the ventricularis. These studies confirmed that the microlayer-specific proteome was preserved in cultured valvular interstitial cells, and that valvular interstitial cells exposed to alkaline phosphatase–dependent and alkaline phosphatase–independent calcifying stimuli had distinct proteome profiles, both of which overlapped with that of the whole tissue. Analysis of protein–protein interaction networks found a significant closeness to multiple inflammatory and fibrotic diseases. Conclusions: A spatially and temporally resolved multi-omics, and network and systems biology strategy identifies the first molecular regulatory networks in CAVD, a cardiac condition without a pharmacological cure, and describes a novel means of systematic disease ontology that is broadly applicable to comprehensive omics studies of cardiovascular diseases.
0
Citation201
0
Save
10

Endothelial cells secrete small extracellular vesicles bidirectionally containing distinct cargo to uniquely reprogram vascular cells in the circulation and vessel wall

Sneha Raju et al.Apr 29, 2023
Extracellular vesicles (EVs) contain bioactive cargo including microRNAs (miRNAs) and proteins that are released by cells as a form of cell-cell communication. Endothelial cells (ECs) form the innermost lining of all blood vessels and thereby interface with cells in the circulation as well as cells residing in the vascular wall. It is unknown whether ECs have the capacity to release EVs capable of governing recipient cells within two separate compartments, and how this is affected by endothelial activation commonly seen in atheroprone regions.Given their boundary location, we propose that ECs utilize bidirectional release of distinct EV cargo in quiescent and activated states to communicate with cells within the circulation and blood vessel wall.EVs were isolated from primary human aortic endothelial cells (ECs) (+/-IL-1β activation), quantified, and analysed by miRNA transcriptomics and proteomics. Compared to quiescent ECs, activated ECs increased EV release, with miRNA and protein cargo that were related to atherosclerosis. RNA sequencing of EV-treated monocytes and smooth muscle cells (SMCs) revealed that EVs from activated ECs altered pathways that were pro-inflammatory and atherogenic. Apical and basolateral EV release was assessed using ECs on transwells. ECs released more EVs apically, which increased with activation. Apical and basolateral EV cargo contained distinct transcriptomes and proteomes that were altered by EC activation. Notably, basolateral EC-EVs displayed greater changes in the EV secretome, with pathways specific to atherosclerosis. In silico analysis determined that compartment-specific cargo released by the apical and basolateral surfaces of ECs can reprogram monocytes and SMCs, respectively.The demonstration that ECs are capable of polarized EV cargo loading and directional EV secretion reveals a novel paradigm for endothelial communication, which may ultimately enhance our ability to design endothelial-based therapeutics for cardiovascular diseases such as atherosclerosis where ECs are persistently activated.
10
Citation2
0
Save
1

Intracellular Proteomics and Extracellular Vesiculomics as a Metric of Disease Recapitulation in 3D Bioprinted Aortic Valve Arrays

Cassandra Clift et al.Jun 25, 2023
ABSTRACT In calcific aortic valve disease (CAVD), mechanosensitive valvular cells respond to fibrosis- and calcification-induced tissue stiffening, further driving pathophysiology. No pharmacotherapeutics are available to treat CAVD, due to the lack of: 1) appropriate experimental models that recapitulate this complex environment; and 2) benchmarking novel engineered AV-model performance. We established a biomaterial-based CAVD model mimicking the biomechanics of the human AV disease-prone fibrosa layer, 3D-bioprinted into 96-well arrays. LC-MS/MS analyses probed the cellular proteome and vesiculome to compare the 3D-bioprinted model vs. traditional 2D monoculture, against human CAVD tissue. The 3D-bioprinted model highly recapitulated the CAVD cellular proteome (94% vs. 70% of 2D proteins). Integration of cellular/vesicular datasets identified known and novel proteins ubiquitous to AV calcification. This study explores how 2D vs. 3D-bioengineered systems recapitulate unique aspects of human disease, positions multi-omics as a novel technique for the evaluation of high throughput-based bioengineered model systems and potentiates future drug discovery.
1

Single-cell T cell receptor sequencing of paired tissue and blood samples reveals clonal expansion of CD8+ effector T cells in patients with calcific aortic valve disease

Francesca Bartoli‐Leonard et al.Jul 8, 2023
Abstract Calcific aortic valve disease (CAVD) is a complex cardiovascular pathology, culminating in aortic stenosis, heart failure and premature mortality, with no comprehensive treatment strategy, except valve replacement. While T cells have been identified within the valve, their contribution to pathogenesis remains unclear. To elucidate the heterogenous phenotype of the immune populations present within patients with CAVD, deep phenotypic screens of paired valve and peripheral blood cells were conducted via flow cytometry (n=20) and immunohistochemistry (n=10). Following identification of a significant population of memory T cells; specifically, CD8+ T cells within the valve, single cell RNA sequencing and paired single T cell receptor sequencing was conducted on a further 4 patients on CD45+ CD3+, CD4+ or CD8+ T cells. Through unsupervised clustering, 7 T cell populations were identified within the blood and 10 identified within the valve. Tissue resident memory (T RM ) T cells were detected for the first time within the valve, exhibiting a highly cytotoxic, activated, and terminally differentiated phenotype. This pan-pro-inflammatory signal was differentially identified in T cells originating from the valve, and not observed in the blood, indicative of an adaptive, local not-systemic inflammatory signature in CAVD patients. T cell receptor analysis identified hyperexpanded clones within the CD8+ T cell central memory (T CM ) population, with T RM cells comprising the majority of large and medium clonal expansion within the entire T cell population. Clonal interaction network analysis demonstrated the greatest proportion of clones originating from CD8+ T cell effector memory (T EM ) and CD4+ naïve / T CM populations and ending in the CD8+ T RM and CD8+ T CM clusters, suggesting a clonal expansion and predicted trajectory of T cells towards a tissue resident, cytotoxic environment within the valve. CDR3 epitope predictive analysis identified 7 potential epitope targets, of which GALNT4 and CR1L have previously been implicated in a cardiovascular context as mediators of inflammation. Taken together, the data identified T cell sub-populations within the context of CAVD and further predicted possible epitopes responsible for the clonal expansion of the valvular T cells, which may be important for propagating inflammation in CAVD.
2

Conserved and Divergent Modulation of Calcification in Atherosclerosis and Aortic Valve Disease by Tissue Extracellular Vesicles

Mark Blaser et al.Apr 3, 2020
Background: Fewer than 50% of patients develop calcification of both atherosclerotic plaques and aortic valves, implying differential pathogenesis. While circulating extracellular vesicles (EVs) act as biomarkers of cardiovascular diseases, tissue-entrapped EVs associate with early mineralization, but their contents, function, and contributions to disease remain unknown. Results: Global proteomics of human carotid artery endarterectomies and calcified aortic valves from a total of 27 donors revealed significant over-representation of proteins with vesicle-associated pathways/ontologies common to both diseases. We exploited enzymatic digestion, serial (ultra)centrifugation and OptiPrep density-gradient separation to isolate EV populations from diseased arteries and valves. Mass spectrometry found 22 EV marker proteins to be highly enriched in the four least-dense OptiPrep fractions while extracellular matrix proteins predominated in denser fractions, as confirmed by CD63 immunogold electron microscopy and nanoparticle tracking analysis. Proteomics and miRNA-sequencing of OptiPrep-enriched tissue EVs quantified 1,104 proteins and 123 miR cargoes linked to 5,182 target genes. Pathway networks of proteins and miR targets common to artery and valve tissue EVs revealed a shared regulation of Rho GTPase and MAPK intracellular signaling cascades. 179 proteins and 5 miRs were significantly altered between artery and valve EVs; multi-omics integration determined that EVs differentially modulated cellular contraction and p53-mediated transcriptional regulation in diseased vascular vs. valvular tissue. Conclusions: Our findings delineate a strategy to isolate, purify, and study protein and RNA cargoes from EVs entrapped in fibrocalcific tissues. Multi-omics and network approaches implicated tissue-resident EVs in human cardiovascular disease.