Summary Although recent studies indicate the impact of microbes on the central nervous systems and behavior, it remains unclear how the relationship between the functionality of the nervous system, behavior and the microbiota arise. We studied the eating behavior of Hydra, a host that has a simple nervous system and a low-complexity microbiota. To identify the neuronal subpopulations involved, we used a subpopulation specific cell ablation system and calcium imaging. The role of the microbiota was uncovered by reducing the diversity of the natural microbiota. Here, we demonstrate that different neuronal subpopulations are functioning together to control the eating behavior. The microbiota participates in control of the eating behavior since germ-free or mono-colonized animals have drastic difficulties in mouth opening. This was restored by adding a full complement of the microbiota. In summary, we provide a mechanistic explanation of how the eating behavior is controlled in Hydra and how microbes can affect the neuronal circuit. Highlights - Multiple neuronal modules and their networks control complex behavior in an animal lacking a central nervous system. - Its associated microbes participate in these neuronal circuits and influence the eating behavior. - Disorganization of the microbiota negatively impacts this eating behavior. - Glutamate participates in an evolutionary ancient interkingdom language.