Abstract Mutations in aristaless-related homeobox ( ARX ) are associated with neurodevelopmental disorders including developmental epilepsies, intellectual disabilities, and autism spectrum disorders, with or without brain malformations. Aspects of these disorders have been linked to abnormal cortical interneuron (cIN) development and function. To further understand ARX’s role in cIN development, multiple Arx mutant mouse lines were interrogated. We found that ARX is critical for controlling cIN numbers and distribution, especially, in the developing marginal zone (MZ). Single cell transcriptomics and ChIP-seq, combined with functional studies, revealed ARX directly or indirectly regulates genes involved in proliferation and the cell cycle (e.g., Bub3 , Cspr3 ), fate specification (e.g., Nkx2.1 , Maf , Mef2c ), and migration (e.g., Nkx2.1 , Lmo1 , Cxcr4 , Nrg1 , ErbB4 ). Our data suggest that the MZ stream defects primarily result from disordered cell-cell communication. Together our findings provide new insights into the mechanisms underlying cIN development and migration and how they are disrupted in several disorders.