GB
Giancarlo Bonora
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
16
(63% Open Access)
Cited by:
1,212
h-index:
22
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cooperative Binding of Transcription Factors Orchestrates Reprogramming

Constantinos Chronis et al.Jan 1, 2017

Summary

 Oct4, Sox2, Klf4, and cMyc (OSKM) reprogram somatic cells to pluripotency. To gain a mechanistic understanding of their function, we mapped OSKM-binding, stage-specific transcription factors (TFs), and chromatin states in discrete reprogramming stages and performed loss- and gain-of-function experiments. We found that OSK predominantly bind active somatic enhancers early in reprogramming and immediately initiate their inactivation genome-wide by inducing the redistribution of somatic TFs away from somatic enhancers to sites elsewhere engaged by OSK, recruiting Hdac1, and repressing the somatic TF Fra1. Pluripotency enhancer selection is a stepwise process that also begins early in reprogramming through collaborative binding of OSK at sites with high OSK-motif density. Most pluripotency enhancers are selected later in the process and require OS and other pluripotency TFs. Somatic and pluripotency TFs modulate reprogramming efficiency when overexpressed by altering OSK targeting, somatic-enhancer inactivation, and pluripotency enhancer selection. Together, our data indicate that collaborative interactions among OSK and with stage-specific TFs direct both somatic-enhancer inactivation and pluripotency-enhancer selection to drive reprogramming.
0
Citation474
0
Save
1

Unsupervised manifold alignment for single-cell multi-omics data

Ritambhara Singh et al.Jun 15, 2020
Abstract Integrating single-cell measurements that capture different properties of the genome is vital to extending our understanding of genome biology. This task is challenging due to the lack of a shared axis across datasets obtained from different types of single-cell experiments. For most such datasets, we lack corresponding information among the cells (samples) and the measurements (features). In this scenario, unsupervised algorithms that are capable of aligning single-cell experiments are critical to learning an in silico co-assay that can help draw correspondences among the cells. Maximum mean discrepancy-based manifold alignment (MMD-MA) is such an unsupervised algorithm. Without requiring correspondence information, it can align single-cell datasets from different modalities in a common shared latent space, showing promising results on simulations and a small-scale single-cell experiment with 61 cells. However, it is essential to explore the applicability of this method to larger single-cell experiments with thousands of cells so that it can be of practical interest to the community. In this paper, we apply MMD-MA to two recent datasets that measure transcriptome and chromatin accessibility in ~2000 single cells. To scale the runtime of MMD-MA to a more substantial number of cells, we extend the original implementation to run on GPUs. We also introduce a method to automatically select one of the user-defined parameters, thus reducing the hyperparameter search space. We demonstrate that the proposed extensions allow MMD-MA to accurately align state-of-the-art single-cell experiments.
1

CTCF-mediated insulation and chromatin environment modulateCar5bescape from X inactivation

Fang He et al.May 4, 2023
The number and escape levels of genes that escape X chromosome inactivation (XCI) in female somatic cells vary among tissues and cell types, potentially contributing to specific sex differences. Here we investigate the role of CTCF, a master chromatin conformation regulator, in regulating escape from XCI. CTCF binding profiles and epigenetic features were systematically examined at constitutive and facultative escape genes using mouse allelic systems to distinguish the inactive X (Xi) and active X (Xa) chromosomes.We found that escape genes are located inside domains flanked by convergent arrays of CTCF binding sites, consistent with the formation of loops. In addition, strong and divergent CTCF binding sites often located at the boundaries between escape genes and adjacent neighbors subject to XCI would help insulate domains. Facultative escapees show clear differences in CTCF binding dependent on their XCI status in specific cell types/tissues. Concordantly, deletion but not inversion of a CTCF binding site at the boundary between the facultative escape gene Car5b and its silent neighbor Siah1b resulted in loss of Car5b escape. Reduced CTCF binding and enrichment of a repressive mark over Car5b in cells with a boundary deletion indicated loss of looping and insulation. In mutant lines in which either the Xi-specific compact structure or its H3K27me3 enrichment was disrupted, escape genes showed an increase in gene expression and associated active marks, supporting the roles of the 3D Xi structure and heterochromatic marks in constraining levels of escape.Our findings indicate that escape from XCI is modulated both by looping and insulation of chromatin via convergent arrays of CTCF binding sites and by compaction and epigenetic features of the surrounding heterochromatin.
1
Citation2
0
Save
0

Single-cell landscape of nuclear configuration and gene expression during stem cell differentiation and X inactivation

Giancarlo Bonora et al.Nov 20, 2020
Abstract Mammalian development is associated with extensive changes in gene expression, chromatin accessibility, and nuclear structure. Here, we follow such changes associated with mouse embryonic stem cell differentiation and X inactivation by integrating, for the first time, allele-specific data obtained by high-throughput single-cell RNA-seq, ATAC-seq, and Hi-C. In differentiated cells, contact decay profiles, which clearly distinguish the active and inactive X chromosomes, reveal loss of the inactive X-specific structure at mitosis followed by a rapid reappearance, suggesting a ‘bookkeeping’ mechanism. In differentiating embryonic stem cells, changes in contact decay profiles are detected in parallel on both the X chromosomes and autosomes, suggesting profound simultaneous reorganization. The onset of the inactive X-specific structure in single cells is notably delayed relative to that of gene silencing, consistent with the idea that chromatin compaction is a late event of X inactivation. Novel computational approaches to effectively align single-cell gene expression, chromatin accessibility, and 3D chromosome structure reveal that long-range structural changes to chromosomes appear as discrete events, unlike progressive changes in gene expression and chromatin accessibility.
0
Citation2
0
Save
1

Dynamic chromatin organization and regulatory interactions in human endothelial cell differentiation

Kris Alavattam et al.Apr 16, 2022
Abstract Background Vascular endothelial cells are a mesoderm-derived lineage with many essential functions, including angiogenesis and coagulation. However, the gene regulatory mechanisms that underpin endothelial specialization are largely unknown, as are the roles of 3D chromatin organization in regulating endothelial cell transcription. Methods To investigate the relationships between 3D chromatin organization and gene expression in endothelial cell differentiation, we induced endothelial cell differentiation from human pluripotent stem cells and performed Hi-C and RNA-seq assays at specific timepoints in differentiation. Results Our analyses reveal that long-range intrachromosomal contacts increase over the course of endothelial cell differentiation, as do genomic compartment transitions between active and inactive states. These compartmental states are tightly associated with endothelial transcription. Dynamic topologically associating domain (TAD) boundaries strengthen and converge on an endothelial cell state, and nascent TAD boundaries are linked to the expression of genes that support endothelial cell specification. Relatedly, chromatin pairwise point interactions (DNA loops) increase in frequency during differentiation and are linked to the expression of genes with essential roles in vascular biology, including MECOM, TFPI , and KDR . To identify forms of regulation specific to endothelial cell differentiation, we compared the functional chromatin dynamics of endothelial cells with those of developing cardiomyocytes. Cardiomyocytes exhibit greater long-range cis interactions than endothelial cells, whereas endothelial cells have increased local intra-TAD interactions and much more abundant pairwise point interactions. Conclusions Genome topology changes dynamically during endothelial differentiation, including acquisition of long-range cis interactions and new TAD boundaries, interconversion of hetero- and euchromatin, and formation of DNA loops. These chromatin dynamics guide transcription in the development of endothelial cells and promote the divergence of endothelial cells from related cell types such as cardiomyocytes.
Load More