KN
Katrina Nguyen
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(100% Open Access)
Cited by:
244
h-index:
12
/
i10-index:
13
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
2

IgG-like bispecific antibodies with potent and synergistic neutralization against circulating SARS-CoV-2 variants of concern

M. Chang et al.Oct 3, 2022
Monoclonal antibodies are a promising approach to treat COVID-19, however the emergence of SARS-CoV-2 variants has challenged the efficacy and future of these therapies. Antibody cocktails are being employed to mitigate these challenges, but neutralization escape remains a major challenge and alternative strategies are needed. Here we present two anti-SARS-CoV-2 spike binding antibodies, one Class 1 and one Class 4, selected from our non-immune human single-chain variable fragment (scFv) phage library, that are engineered into four, fully-human IgG-like bispecific antibodies (BsAb). Prophylaxis of hACE2 mice and post-infection treatment of golden hamsters demonstrates the efficacy of the monospecific antibodies against the original Wuhan strain, while promising in vitro results with the BsAbs demonstrate enhanced binding and distinct synergistic effects on neutralizing activity against circulating variants of concern. In particular, one BsAb engineered in a tandem scFv-Fc configuration shows synergistic neutralization activity against several variants of concern including B.1.617.2. This work provides evidence that synergistic neutralization can be achieved using a BsAb scaffold, and serves as a foundation for the future development of broadly reactive BsAbs against emerging variants of concern.
2
Paper
Citation8
0
Save
4

Selective transport of fluorescent proteins into the phage nucleus

Katrina Nguyen et al.Nov 25, 2020
Abstract Upon infection of Pseudomonas cells, jumbo phages 201Φ2-1, ΦPA3, and ΦKZ assemble a phage nucleus. Viral DNA is enclosed within the phage-encoded proteinaceous shell along with proteins associated with DNA replication, recombination and transcription. Ribosomes and proteins involved in metabolic processes are excluded from the nucleus. RNA synthesis occurs inside the phage nucleus and messenger RNA is presumably transported into the cytoplasm to be translated. Newly synthesized proteins either remain in the cytoplasm or specifically translocate into the nucleus. The molecular mechanisms governing selective protein sorting and nuclear import in these phage infection systems are currently unclear. To gain insight into this process, we studied the localization of five reporter fluorescent proteins (GFP + , sfGFP, GFPmut1, mCherry, CFP). During infection with ΦPA3 or 201Φ2-1, all five fluorescent proteins were excluded from the nucleus as expected; however, we have discovered an anomaly with the ΦKZ nuclear transport system. The fluorescent protein GFPmut1, expressed by itself, was transported into the ΦKZ phage nucleus. We identified the amino acid residues on the surface of GFPmut1 required for nuclear targeting. Fusing GFPmut1 to any protein, including proteins that normally reside in the cytoplasm, resulted in transport of the fusion into the nucleus. Although the mechanism of transport is still unknown, we demonstrate that GFPmut1 is a useful tool that can be used for fluorescent labelling and targeting of proteins into the ΦKZ phage nucleus.
4
Citation2
0
Save
89

Subcellular Organization of Viral Particles During Maturation of Nucleus-Forming Jumbo Phage

Vorrapon Chaikeeratisak et al.Apr 26, 2021
Summary Many eukaryotic viruses assemble mature particles within distinct subcellular compartments, but bacteriophages were long assumed to assemble randomly throughout the host cell cytoplasm. Here we visualized the subcellular location of viral particles formed during replication of Pseudomonas nucleus-forming jumbo phages and discovered that they assemble a unique structure inside cells we term phage bouquets. We show that after capsids complete DNA packaging at the surface of the phage nucleus, tails assemble and attach to the capsids, and these particles accumulate to form bouquets at specific subcellular locations. In these bouquets, the viral particles are arranged in a spherical pattern with tails oriented inward and the heads outwards. Localized at fixed distances on either side of the phage nucleus, bouquets grow in size and number over time as new phage particles are added. In the presence of mutations that cause the phage nucleus to be mispositioned away from its typical position at the midcell, bouquets still localize at the same fixed distance from the nucleus, suggesting an active mechanism for their formation and positioning. These results mark the discovery of a pathway for organizing mature viral particles inside bacteria and demonstrate that nucleus-forming jumbo phage, like most eukaryotic viruses, are highly spatially organized during all stages of their lytic cycle.
89
Citation1
0
Save
1

Recurrent pattern completion drives the neocortical representation of sensory inference

Hoon-Kyu Shin et al.Jun 7, 2023
When sensory information is incomplete or ambiguous, the brain relies on prior expectations to infer perceptual objects. Despite the centrality of this process to perception, the neural mechanism of sensory inference is not known. Illusory contours (ICs) are key tools to study sensory inference because they contain edges or objects that are implied only by their spatial context. Using cellular resolution, mesoscale two-photon calcium imaging and multi-Neuropixels recordings in the mouse visual cortex, we identified a sparse subset of neurons in the primary visual cortex (V1) and higher visual areas that respond emergently to ICs. We found that these highly selective 'IC-encoders' mediate the neural representation of IC inference. Strikingly, selective activation of these neurons using two-photon holographic optogenetics was sufficient to recreate IC representation in the rest of the V1 network, in the absence of any visual stimulus. This outlines a model in which primary sensory cortex facilitates sensory inference by selectively strengthening input patterns that match prior expectations through local, recurrent circuitry. Our data thus suggest a clear computational purpose for recurrence in the generation of holistic percepts under sensory ambiguity. More generally, selective reinforcement of top-down predictions by pattern-completing recurrent circuits in lower sensory cortices may constitute a key step in sensory inference.