GK
George Karniadakis
Author with expertise in Physics-Informed Neural Networks for Scientific Computing
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
71
(70% Open Access)
Cited by:
34,674
h-index:
129
/
i10-index:
578
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Modeling uncertainty in flow simulations via generalized polynomial chaos

Dongbin Xiu et al.Apr 23, 2003
We present a new algorithm to model the input uncertainty and its propagation in incompressible flow simulations. The stochastic input is represented spectrally by employing orthogonal polynomial functionals from the Askey scheme as trial basis to represent the random space. A standard Galerkin projection is applied in the random dimension to obtain the equations in the weak form. The resulting system of deterministic equations is then solved with standard methods to obtain the solution for each random mode. This approach can be considered as a generalization of the original polynomial chaos expansion, first introduced by Wiener [Am. J. Math. 60 (1938) 897]. The original method employs the Hermite polynomials (one of the 13 members of the Askey scheme) as the basis in random space. The algorithm is applied to micro-channel flows with random wall boundary conditions, and to external flows with random freestream. Efficiency and convergence are studied by comparing with exact solutions as well as numerical solutions obtained by Monte Carlo simulations. It is shown that the generalized polynomial chaos method promises a substantial speed-up compared with the Monte Carlo method. The utilization of different type orthogonal polynomials from the Askey scheme also provides a more efficient way to represent general non-Gaussian processes compared with the original Wiener–Hermite expansions.
0

REPORT: A MODEL FOR FLOWS IN CHANNELS, PIPES, AND DUCTS AT MICRO AND NANO SCALES

Ali Beskok et al.Feb 1, 1999
Rarefied gas flows in channels, pipes, and ducts with smooth surfaces are studied in a wide range of Knudsen number (Kn) at low Mach number (M) with the objective of developing simple, physics-based models. Such flows are encountered in microelectromechanical systems (MEMS), in nanotechnology applications, and in low-pressure environments. A new general boundary condition that accounts for the reduced momentum and heat exchange with wall surfaces is proposed and its validity is investigated. It is shown that it is applicable in the entire Knudsen range and is second-order accurate in Kn in the slip flow regime. Based on this boundary condition, a universal scaling for the velocity profile is obtained, which is used to develop a unified model predicting mass flow rate and pressure distribution with reasonable accuracy for channel, pipe, and duct flows in the regime (0 Kn). A rarefaction coefficient is introduced into this two-parameter model to account for the increasingly reduced intermolecular collisions in the transition and free-molecular regimes. The new model is validated with comparisons against direct-simulation Monte Carlo results, linearized Boltzmann solutions, and experimental data.
0
Paper
Citation1,182
0
Save
0

Hidden physics models: Machine learning of nonlinear partial differential equations

Maziar Raissi et al.Dec 15, 2017
While there is currently a lot of enthusiasm about “big data”, useful data is usually “small” and expensive to acquire. In this paper, we present a new paradigm of learning partial differential equations from small data. In particular, we introduce hidden physics models, which are essentially data-efficient learning machines capable of leveraging the underlying laws of physics, expressed by time dependent and nonlinear partial differential equations, to extract patterns from high-dimensional data generated from experiments. The proposed methodology may be applied to the problem of learning, system identification, or data-driven discovery of partial differential equations. Our framework relies on Gaussian processes, a powerful tool for probabilistic inference over functions, that enables us to strike a balance between model complexity and data fitting. The effectiveness of the proposed approach is demonstrated through a variety of canonical problems, spanning a number of scientific domains, including the Navier–Stokes, Schrödinger, Kuramoto–Sivashinsky, and time dependent linear fractional equations. The methodology provides a promising new direction for harnessing the long-standing developments of classical methods in applied mathematics and mathematical physics to design learning machines with the ability to operate in complex domains without requiring large quantities of data.
0

DeepXDE: A Deep Learning Library for Solving Differential Equations

Lu Lu et al.Jan 1, 2021
Deep learning has achieved remarkable success in diverse applications; however, its use in solving partial differential equations (PDEs) has emerged only recently. Here, we present an overview of physics-informed neural networks (PINNs), which embed a PDE into the loss of the neural network using automatic differentiation. The PINN algorithm is simple, and it can be applied to different types of PDEs, including integro-differential equations, fractional PDEs, and stochastic PDEs. Moreover, from an implementation point of view, PINNs solve inverse problems as easily as forward problems. We propose a new residual-based adaptive refinement (RAR) method to improve the training efficiency of PINNs. For pedagogical reasons, we compare the PINN algorithm to a standard finite element method. We also present a Python library for PINNs, DeepXDE, which is designed to serve both as an educational tool to be used in the classroom as well as a research tool for solving problems in computational science and engineering. Specifically, DeepXDE can solve forward problems given initial and boundary conditions, as well as inverse problems given some extra measurements. DeepXDE supports complex-geometry domains based on the technique of constructive solid geometry and enables the user code to be compact, resembling closely the mathematical formulation. We introduce the usage of DeepXDE and its customizability, and we also demonstrate the capability of PINNs and the user-friendliness of DeepXDE for five different examples. More broadly, DeepXDE contributes to the more rapid development of the emerging scientific machine learning field.
0

Physics-informed neural networks for high-speed flows

Zhiping Mao et al.Dec 27, 2019
In this work we investigate the possibility of using physics-informed neural networks (PINNs) to approximate the Euler equations that model high-speed aerodynamic flows. In particular, we solve both the forward and inverse problems in one-dimensional and two-dimensional domains. For the forward problem, we utilize the Euler equations and the initial/boundary conditions to formulate the loss function, and solve the one-dimensional Euler equations with smooth solutions and with solutions that have a contact discontinuity as well as a two-dimensional oblique shock wave problem. We demonstrate that we can capture the solutions with only a few scattered points clustered randomly around the discontinuities. For the inverse problem, motivated by mimicking the Schlieren photography experimental technique used traditionally in high-speed aerodynamics, we use the data on density gradient ∇ρ(x,t), the pressure p(x∗,t) at a specified point x=x∗ as well as the conservation laws to infer all states of interest (density, velocity and pressure fields). We present illustrative benchmark examples for both the problem with smooth solutions and Riemann problems (Sod and Lax problems) with PINNs, demonstrating that all inferred states are in good agreement with the reference solutions. Moreover, we show that the choice of the position of the point x∗ plays an important role in the learning process. In particular, for the problem with smooth solutions we can randomly choose the position of the point x∗ from the computational domain, while for the Sod or Lax problem, we have to choose the position of the point x∗ from the domain between the initial discontinuous point and the shock position of the final time. We also solve the inverse problem by combining the aforementioned data and the Euler equations in characteristic form, showing that the results obtained by using the Euler equations in characteristic form are better than that obtained by using the Euler equations in conservative form. Furthermore, we consider another type of inverse problem, specifically, we employ PINNs to learn the value of the parameter γ in the equation of state for the parameterized two-dimensional oblique wave problem by using the given data of the density, velocity and the pressure, and we identify the parameter γ accurately. Taken together, our results demonstrate that in the current form, where the conservation laws are imposed at random points, PINNs are not as accurate as traditional numerical methods for forward problems but they are superior for inverse problems that cannot even be solved with standard techniques.
0

NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations

Xiaowei Jin et al.Nov 1, 2020
In the last 50 years there has been a tremendous progress in solving numerically the Navier-Stokes equations using finite differences, finite elements, spectral, and even meshless methods. Yet, in many real cases, we still cannot incorporate seamlessly (multi-fidelity) data into existing algorithms, and for industrial-complexity applications the mesh generation is time consuming and still an art. Moreover, solving ill-posed problems (e.g., lacking boundary conditions) or inverse problems is often prohibitively expensive and requires different formulations and new computer codes. Here, we employ physics-informed neural networks (PINNs), encoding the governing equations directly into the deep neural network via automatic differentiation, to overcome some of the aforementioned limitations for simulating incompressible laminar and turbulent flows. We develop the Navier-Stokes flow nets (NSFnets) by considering two different mathematical formulations of the Navier-Stokes equations: the velocity-pressure (VP) formulation and the vorticity-velocity (VV) formulation. Since this is a new approach, we first select some standard benchmark problems to assess the accuracy, convergence rate, computational cost and flexibility of NSFnets; analytical solutions and direct numerical simulation (DNS) databases provide proper initial and boundary conditions for the NSFnet simulations. The spatial and temporal coordinates are the inputs of the NSFnets, while the instantaneous velocity and pressure fields are the outputs for the VP-NSFnet, and the instantaneous velocity and vorticity fields are the outputs for the VV-NSFnet. This is unsupervised learning and, hence, no labeled data are required beyond boundary and initial conditions and the fluid properties. The residuals of the VP or VV governing equations, together with the initial and boundary conditions, are embedded into the loss function of the NSFnets. No data is provided for the pressure to the VP-NSFnet, which is a hidden state and is obtained via the incompressibility constraint without extra computational cost. Unlike the traditional numerical methods, NSFnets inherit the properties of neural networks (NNs), hence the total error is composed of the approximation, the optimization, and the generalization errors. Here, we empirically attempt to quantify these errors by varying the sampling (“residual”) points, the iterative solvers, and the size of the NN architecture. For the laminar flow solutions, we show that both the VP and the VV formulations are comparable in accuracy but their best performance corresponds to different NN architectures. The initial convergence rate is fast but the error eventually saturates to a plateau due to the dominance of the optimization error. For the turbulent channel flow, we show that NSFnets can sustain turbulence at Reτ∼1,000, but due to expensive training we only consider part of the channel domain and enforce velocity boundary conditions on the subdomain boundaries provided by the DNS data base. We also perform a systematic study on the weights used in the loss function for balancing the data and physics components, and investigate a new way of computing the weights dynamically to accelerate training and enhance accuracy. In the last part, we demonstrate how NSFnets should be used in practice, namely for ill-posed problems with incomplete or noisy boundary conditions as well as for inverse problems. We obtain reasonably accurate solutions for such cases as well without the need to change the NSFnets and at the same computational cost as in the forward well-posed problems. We also present a simple example of transfer learning that will aid in accelerating the training of NSFnets for different parameter settings.
0

Conservative physics-informed neural networks on discrete domains for conservation laws: Applications to forward and inverse problems

Ameya Jagtap et al.Apr 11, 2020
We propose a conservative physics-informed neural network (cPINN) on discrete domains for nonlinear conservation laws. Here, the term discrete domain represents the discrete sub-domains obtained after division of the computational domain, where PINN is applied and the conservation property of cPINN is obtained by enforcing the flux continuity in the strong form along the sub-domain interfaces. In case of hyperbolic conservation laws, the convective flux contributes at the interfaces, whereas in case of viscous conservation laws, both convective and diffusive fluxes contribute. Apart from the flux continuity condition, an average solution (given by two different neural networks) is also enforced at the common interface between two sub-domains. One can also employ a deep neural network in the domain, where the solution may have complex structure, whereas a shallow neural network can be used in the sub-domains with relatively simple and smooth solutions. Another advantage of the proposed method is the additional freedom it gives in terms of the choice of optimization algorithm and the various training parameters like residual points, activation function, width and depth of the network etc. Various forms of errors involved in cPINN such as optimization, generalization and approximation errors and their sources are discussed briefly. In cPINN, locally adaptive activation functions are used, hence training the model faster compared to its fixed counterparts. Both, forward and inverse problems are solved using the proposed method. Various test cases ranging from scalar nonlinear conservation laws like Burgers, Korteweg–de Vries (KdV) equations to systems of conservation laws, like compressible Euler equations are solved. The lid-driven cavity test case governed by incompressible Navier–Stokes equation is also solved and the results are compared against a benchmark solution. The proposed method enjoys the property of domain decomposition with separate neural networks in each sub-domain, and it efficiently lends itself to parallelized computation, where each sub-domain can be assigned to a different computational node.
Load More