PG
Pierre‐Alexandre Gagnaire
Author with expertise in Population Genetic Structure and Dynamics
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
20
(55% Open Access)
Cited by:
637
h-index:
31
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

European sea bass genome and its variation provide insights into adaptation to euryhalinity and speciation

Mbaye Tine et al.Dec 23, 2014
The European sea bass (Dicentrarchus labrax) is a temperate-zone euryhaline teleost of prime importance for aquaculture and fisheries. This species is subdivided into two naturally hybridizing lineages, one inhabiting the north-eastern Atlantic Ocean and the other the Mediterranean and Black seas. Here we provide a high-quality chromosome-scale assembly of its genome that shows a high degree of synteny with the more highly derived teleosts. We find expansions of gene families specifically associated with ion and water regulation, highlighting adaptation to variation in salinity. We further generate a genome-wide variation map through RAD-sequencing of Atlantic and Mediterranean populations. We show that variation in local recombination rates strongly influences the genomic landscape of diversity within and differentiation between lineages. Comparing predictions of alternative demographic models to the joint allele-frequency spectrum indicates that genomic islands of differentiation between sea bass lineages were generated by varying rates of introgression across the genome following a period of geographical isolation. The European sea bass is an economically important fish species, which is subject to intense selective breeding. Here, the authors sequence the genome of the European sea bass and highlight gene family expansions underlying adaptation to salinity change, as well as the genomic architecture of speciation between two divergent sea bass lineages.
0
Citation411
0
Save
0

THE GENETIC ARCHITECTURE OF REPRODUCTIVE ISOLATION DURING SPECIATION-WITH-GENE-FLOW IN LAKE WHITEFISH SPECIES PAIRS ASSESSED BY RAD SEQUENCING

Pierre‐Alexandre Gagnaire et al.Feb 22, 2013
During speciation-with-gene-flow, effective migration varies across the genome as a function of several factors, including proximity of selected loci, recombination rate, strength of selection, and number of selected loci. Genome scans may provide better empirical understanding of the genome-wide patterns of genetic differentiation, especially if the variance due to the previously mentioned factors is partitioned. In North American lake whitefish (Coregonus clupeaformis), glacial lineages that diverged in allopatry about 60,000 years ago and came into contact 12,000 years ago have independently evolved in several lakes into two sympatric species pairs (a normal benthic and a dwarf limnetic). Variable degrees of reproductive isolation between species pairs across lakes offer a continuum of genetic and phenotypic divergence associated with adaptation to distinct ecological niches. To disentangle the complex array of genetically based barriers that locally reduce the effective migration rate between whitefish species pairs, we compared genome-wide patterns of divergence across five lakes distributed along this divergence continuum. Using restriction site associated DNA (RAD) sequencing, we combined genetic mapping and population genetics approaches to identify genomic regions resistant to introgression and derive empirical measures of the barrier strength as a function of recombination distance. We found that the size of the genomic islands of differentiation was influenced by the joint effects of linkage disequilibrium maintained by selection on many loci, the strength of ecological niche divergence, as well as demographic characteristics unique to each lake. Partial parallelism in divergent genomic regions likely reflected the combined effects of polygenic adaptation from standing variation and independent changes in the genetic architecture of postzygotic isolation. This study illustrates how integrating genetic mapping and population genomics of multiple sympatric species pairs provide a window on the speciation-with-gene-flow mechanism.
0
Citation203
0
Save
0

Modeling the Multiple Facets of Speciation-with-Gene-Flow Towards Inferring the Divergence History of Lake Whitefish Species Pairs (Coregonus Clupeaformis)

Clément Rougeux et al.Aug 10, 2016
Abstract Parallel divergence patterns across replicated species pairs occurring in similar environmental contrasts may arise through distinct evolutionary scenarios. Deciphering whether such parallelism actually reflects repeated parallel divergence driven by divergent selection or a single divergence event with subsequent gene flow needs to be ascertained. Reconstructing historical gene flow is therefore of fundamental interest to understand how demography and selection jointly shaped genomic divergence during speciation. Here, we use an extended modeling framework to explore the multiple facets of speciation-with-gene-flow with demo-genetic divergence models that capture both temporal and genomic variation in effective population size and migration rate. We investigate the divergence history of five sympatric Lake Whitefish limnetic (dwarf) and benthic (normal) species pairs characterized by variable degrees of ecological divergence and reproductive isolation. Genome-wide SNPs were used to document the extent of genetic differentiation in each species pair, and 26 divergence models were fitted and compared to the unfolded joint allele frequency spectrum of each pair. We found evidence that a recent (circa 3000-4000 generations) asymmetrical secondary contact between expanding post-glacial populations has accompanied Whitefish diversification. Our results suggest that heterogeneous genomic differentiation patterns have emerged through the combined effects of linked selection generating variable rates of lineage sorting across the genome during geographical isolation, and heterogeneous introgression eroding divergence at different rates across the genome upon secondary contact. This study thus provides a new retrospective insight into the historical demographic and selective processes that shaped a continuum of divergence associated with ecological speciation.
0
Citation5
0
Save
0

The role of genomic vs. epigenomic variation in shaping patterns of convergent transcriptomic variation across continents in a young species complex

Clément Rougeux et al.Sep 30, 2019
ABSTRACT Repeated adaptive divergence in replicates of phenotypic diversification offers a propitious context to identify the molecular bases associated to adaptive divergence. A currently hotly debated topic pertains to the relative role of genomic vs. epigenomic variation in shaping patterns of phenotypic variation at the gene expression level. Here, we combined genomic, epigenomic and transcriptomic information from 64 individuals in order to quantify the relative role of SNPs and DNA methylation variation in the repeated evolution of four limnetic-benthic whitefish species pairs from Europe and North America. We first found evidence for 149 convergent differentially methylated regions (DMRs) between species across continents, which significantly influenced levels of gene expression. Hyper-methylated DMRs in the limnetic species were globally associated to an expression repression relatively to benthic species, and inversely. Furthermore, we identified 108 convergent genetic variants (eQTLs) associated to gene expression differences between species. Gene expression differences were more pronounced in genes harbouring eQTL compared to those associated with DMRs, thus revealing a greater effect of eQTLs on gene expression. Multivariate analyses allowed partitioning the relative contribution of epi-/genomic changes and their association to gene expression variation. Most of the gene expression variation was significantly explained by genomic (4.1%) and putatively genomic-epigenomic interactive variation (46.7%), while “pure” epigenomic variation explained marginally 2.3% of the gene expression variation across continents. This study provides a rare qualitative and quantitative documentation of the relative role of genomic, DNA methylation and their interaction in shaping patterns of convergent gene expression during the process of ecological speciation.
0
Citation5
0
Save
1

Introgression between highly divergent sea squirt genomes: an adaptive breakthrough?

Christelle Fraïssé et al.Mar 22, 2022
A bstract Human-mediated introductions are reshuffling species distribution on a global scale. Consequently, an increasing number of allopatric taxa are now brought into contact, promoting introgressive hybridization between incompletely isolated species and new adaptive gene transfer. The broadcast spawning marine species, Ciona robusta , has been recently introduced in the native range of its sister taxa, Ciona intestinalis , in the English Channel and North-East Atlantic. These sea squirts are highly divergent, yet hybridization has been reported by crossing experiments and genetic studies in the wild. Here, we examined the consequences of secondary contact between C. intestinalis and C. robusta in the English Channel. We produced genomes phased by transmission to infer the history of divergence and gene flow, and analyzed introgressed genomic tracts. Demographic inference revealed a history of secondary contact with a low overall rate of introgression. Introgressed tracts were short, segregating at low frequency, and scattered throughout the genome, suggesting traces of past contacts during the last 30 ky. However, we also uncovered a hotspot of introgression on chromosome 5, characterized by several hundred kb-long C. robusta haplotypes segregating in C. intestinalis , that introgressed during contemporary times the last 75 years. Although locally more frequent than the baseline level of introgression, C. robusta alleles are not fixed, even in the core region of the introgression hotspot. Still, linkage-disequilibrium patterns and haplotype-based tests suggest this genomic region is under recent positive selection. We further detected in the hotspot an over-representation of candidate SNPs lying on a cytochrome P450 gene with a high copy number of tandem repeats in the introgressed alleles. Cytochromes P450 are a superfamily of enzymes involved in detoxifying exogenous compounds, constituting a promising avenue for functional studies. These findings support that introgression of an adaptive allele is possible between very divergent genomes and that anthropogenic hybridization can provide the raw material for adaptation of native lineages in the Anthropocene.
1
Citation3
0
Save
0

PRDM9 drives the location and rapid evolution of recombination hotspots in salmonids

Marie Raynaud et al.Mar 7, 2024
Abstract In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters. Paradoxically, PRDM9 induces the self-destruction of its targets and this triggers an ultra-fast evolution of mammalian hotspots. PRDM9 is ancestral to all animals, suggesting a critical importance for the meiotic program, but has been lost in many lineages with surprisingly little effect on meiosis success. However, it is unclear whether the function of PRDM9 described in mammals is shared by other species. To investigate this, we analyzed the recombination landscape of several salmonids, the genome of which harbors one full-length PRDM9 and several truncated paralogs. We identified recombination initiation sites in Oncorhynchus mykiss by mapping meiotic DNA double-strand breaks (DSBs). We found that DNA DSBs clustered at hotspots positioned away from promoters, enriched for the H3K4me3 and H3K4me36 marks and the location of which depended on the genotype of full-length Prdm9 . We observed a high level of polymorphism in the zinc finger domain of full-length Prdm9 , but not of the truncated paralogs. Moreover, population-scaled recombination maps in O. mykiss , Oncorhynchus kisutch and Salmo salar revealed a rapid turnover of recombination hotspots caused by PRDM9 target motif erosion. Our results imply that PRDM9 function is conserved across vertebrates and that the peculiar evolutionary runaway caused by PRDM9 has been active for several hundred million years.
0
Citation3
0
Save
50

Age-specific survivorship and fecundity shape genetic diversity in marine fishes

Pierre Barry et al.Dec 21, 2020
Abstract Genetic diversity varies among species due to a range of eco-evolutionary processes that are not fully understood. The neutral theory predicts that the amount of variation in the genome sequence between different individuals of the same species should increase with its effective population size ( N e ). In real populations, multiple factors that modulate the variance in reproductive success among individuals cause N e to differ from the total number of individuals ( N ). Among these, age-specific mortality and fecundity rates are known to have a direct impact on the ratio. However, the extent to which vital rates account for differences in genetic diversity among species remains unknown. Here, we addressed this question by comparing genome-wide genetic diversity across 16 marine fish species with similar geographic distributions but contrasted lifespan and age-specific survivorship and fecundity curves. We sequenced the whole genome of 300 individuals to high coverage and assessed their genome-wide heterozygosity with a reference-free approach. Genetic diversity varied from 0.2 to 1.4% among species, and showed a negative correlation with adult lifespan, with a large negative effect ( slope = − 0.089 per additional year of lifespan) that was further increased when brooding species providing intense parental care were removed from the dataset ( slope = −0.129 per additional year of lifespan). Using published vital rates for each species, we showed that the ratio resulting simply from life tables parameters can predict the observed differences in genetic diversity among species. Using simulations, we further found that the extent of reduction in with increasing adult lifespan is particularly strong under Type III survivorship curves (high juvenile and low adult mortality) and increasing fecundity with age, a typical characteristic of marine fishes. Our study highlights the importance of vital rates as key determinants of species genetic diversity levels in nature. Author Summary Understanding how and why genetic diversity varies across species has important implications for evolutionary and conservation biology. Although genomics has vastly improved our ability to document intraspecific DNA sequence variation at the genome level, the range and determinants of genetic diversity remain partially understood. At a broad taxonomic scale in eukaryotes, the main determinants of diversity are reproductive strategies distributed along a trade-off between the quantity and the size of offspring, which likely affect the long-term effective population size. Long-lived species also tend to show lower genetic diversity, a result which has however not been reported by comparative studies of genetic diversity at lower taxonomic scales. Here, we compared genetic diversity across 16 European marine fish species showing marked differences in longevity. Adult lifespan was the best predictor of genetic diversity, with genome-wide average heterozygosity ranging from 0.2% in the black anglerfish ( L. budegassa ) to 1.4% in the European pilchard ( S. pilchardus ). Using life tables summarizing age-specific mortality and fecundity rates for each species, we showed that the variance in lifetime reproductive success resulting from age structure, iteroparity and overlapping generations can predict the range of observed differences in genetic diversity among marine fish species. We then used computer simulations to explore how combinations of vital rates characterizing different life histories affect the relationship between adult lifespan and genetic diversity. We found that marine fishes that display high juvenile but low adult mortality, and increasing fecundity with age, are typically expected to show reduced genetic diversity with increased adult lifespan. However, the impact of adult lifespan vanished using bird and mammal-like vital rates. Our study shows that variance in lifetime reproductive success can have a major impact on species genetic diversity and explains why this effect varies widely across taxonomic groups.
50
Citation2
0
Save
1

“Divergence and gene flow history at two large chromosomal inversions involved in long-snouted seahorse ecotype formation”

Laura Meyer et al.Jul 4, 2023
Abstract Chromosomal inversions can play an important role in divergence and reproductive isolation by building and maintaining distinct allelic combinations between evolutionary lineages. Alternatively, they can take the form of balanced polymorphisms that segregate within populations over time until one arrangement becomes fixed. Many questions remain about how these different inversion polymorphisms arise, how the mechanisms responsible for their long-term maintenance interact, and ultimately how they contribute to speciation. The long-snouted seahorse ( Hippocampus guttulatus ) is known to be subdivided into partially isolated lineages and marine-lagoon ecotypes differentiated by structural variation. Here, we aim to characterise these differences along the entire genome, and to reconstruct their history and role in ecotype formation. We generated a near chromosome-level reference genome assembly and described genome-wide patterns of diversity and divergence through the analysis of 112 whole-genome sequences from Atlantic, Mediterranean, and Black Sea populations. Combined with linked-read sequencing data, we found evidence for two megabase-scale chromosomal inversions showing contrasted allele frequency patterns across the species range. We reveal that these inversions represent ancient intraspecific polymorphisms, one being likely maintained by divergent selection, and the other by associative overdominance. Haplotype combinations characterising Mediterranean ecotypes also suggest the existence of potential interactions between the two inversions, possibly driven by environment-dependent fitness effects. Lastly, we detected gene flux eroding divergence between inverted alleles at varying levels between the two inversions, with a likely impact on their long-term dynamics.
1
Citation2
0
Save
39

Performance and limitations of linkage-disequilibrium-based methods for inferring the genomic landscape of recombination and detecting hotspots: a simulation study

Marie Raynaud et al.Mar 31, 2022
Abstract Knowledge of recombination rate variation along the genome provides important insights into genome and phenotypic evolution. Population genomic approaches offer an attractive way to infer the population-scaled recombination rate ρ=4 N e r using the linkage disequilibrium information contained in DNA sequence polymorphism data. Such methods have been used in a broad range of plant and animal species to build genome-wide recombination maps. However, the reliability of these inferences has only been assessed under a restrictive set of conditions. Here, we evaluate the ability of one of the most widely used coalescent-based programs, LDhelmet , to infer a genomic landscape of recombination with the biological characteristics of a human-like landscape including hotspots. Using simulations, we specifically assessed the impact of methodological (sample size, phasing errors, block penalty) and evolutionary parameters (effective population size ( N e ), demographic history, mutation to recombination rate ratio) on inferred map quality. We report reasonably good correlations between simulated and inferred landscapes, but point to limitations when it comes to detecting recombination hotspots. False positive and false negative hotspots considerably confound fine-scale patterns of inferred recombination under a wide range of conditions, particularly when N e is small and the mutation/recombination rate ratio is low, to the extent that maps inferred from populations sharing the same recombination landscape appear uncorrelated. We thus address a message of caution for the users of these approaches, at least for genomes with complex recombination landscapes such as in humans.
39
Citation2
0
Save
0

PRDM9 drives the location and rapid evolution of recombination hotspots in salmonid fish

Marie Raynaud et al.Jan 6, 2025
In many eukaryotes, meiotic recombination occurs preferentially at discrete sites, called recombination hotspots. In various lineages, recombination hotspots are located in regions with promoter-like features and are evolutionarily stable. Conversely, in some mammals, hotspots are driven by PRDM9 that targets recombination away from promoters. Paradoxically, PRDM9 induces the self-destruction of its targets and this triggers an ultra-fast evolution of mammalian hotspots. PRDM9 is ancestral to all animals, suggesting a critical importance for the meiotic program, but has been lost in many lineages with surprisingly little effect on meiosis success. However, it is unclear whether the function of PRDM9 described in mammals is shared by other species. To investigate this, we analyzed the recombination landscape of several salmonids, the genome of which harbors one full-length PRDM9 and several truncated paralogs. We identified recombination initiation sites in Oncorhynchus mykiss by mapping meiotic DNA double-strand breaks (DSBs). We found that DSBs clustered at hotspots positioned away from promoters, enriched for the H3K4me3 and H3K36me3 and the location of which depended on the genotype of full-length Prdm9 . We observed a high level of polymorphism in the zinc finger domain of full-length Prdm9 , indicating diversification driven by positive selection. Moreover, population-scaled recombination maps in O . mykiss , Oncorhynchus kisutch and Salmo salar revealed a rapid turnover of recombination hotspots caused by PRDM9 target motif erosion. Our results imply that PRDM9 function is conserved across vertebrates and that the peculiar evolutionary runaway caused by PRDM9 has been active for several hundred million years.
0
Citation1
0
Save
Load More