MS
M. Silva
Author with expertise in Mechanisms of Alzheimer's Disease
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
7
(86% Open Access)
Cited by:
11
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
5

An mTOR-independent Macroautophagy Activator Ameliorates Tauopathy and Prionopathy Neurodegeneration Phenotypes

Leonard Yoon et al.Sep 30, 2022
Summary Autophagy-lysosomal impairment is an early and prominent feature of neurodegeneration. Autophagy activation reduces protein aggregates and lipid level abnormalities. We performed a high-content imaging-based screen assessing 940,000 small molecules to identify those that reduce lipid droplet numbers. Of 77 validated, structurally diverse hits, 24 increased autophagy flux reporter activity, consistent with accelerated lipid droplet clearance by lipophagy. Of these, we show that CCT020312 activates autophagy independently of mammalian target of rapamycin (mTOR) inhibition, to avoid immunosuppression. CCT020312 reduced insoluble phosphorylated tau levels and tau-mediated neuronal stress vulnerability, as well as reducing intracellular Aβ levels within directly induced neurons bearing epigenetic marks of aging derived from Alzheimer’s patient fibroblasts. Moreover, CCT020312 cleared mutant prion protein aggregates and normalized trafficking deficiencies in axons of a cellular model of familial prion disease. Autophagy is widely considered a promising strategy to attenuate neurodegeneration, and here we introduce a strategy to discover new pharmacology.
5
Citation5
0
Save
1

Small Molecule Inducers of Neuroprotective miR-132 Identified by HTS-HTS in Human iPSC-derived Neurons

Lien Nguyen et al.Nov 1, 2022
SUMMARY MicroRNAs (miRNAs) are short RNAs that regulate fundamental biological processes. miR-132, a key miRNA with established functions in Tau homeostasis and neuroprotection, is consistently downregulated in Alzheimer’s disease (AD) and other tauopathies. miR-132 overexpression rescues neurodegenerative phenotypes in several AD models. To complement research on miRNA-mimicking oligonucleotides targeting the central nervous system, we developed a high-throughput-screen coupled high-throughput-sequencing (HTS-HTS) in human induced pluripotent stem cell (iPSC)-derived neurons to identify small molecule inducers of miR-132. We discovered that cardiac glycosides, which are canonical sodium-potassium ATPase inhibitors, selectively upregulated miR-132 in the sub-μM range. Coordinately, cardiac glycoside treatment downregulated total and phosphorylated Tau in rodent and human neurons and protected against toxicity by glutamate, N-methyl-D-aspartate, rotenone, and Aβ oligomers. In conclusion, we identified small-molecule drugs that upregulated the neuroprotective miR-132 and ameliorated neurodegenerative phenotypes. Our dataset also represents a comprehensive resource for discovering small molecules that modulate specific miRNAs for therapeutic purposes.
1
Citation2
0
Save
13

Improved Protocol for Reproducible Human Cortical Organoids Reveals Early Alterations in Metabolism withMAPTMutations

Taylor Bertucci et al.Jul 11, 2023
Summary Cerebral cortical-enriched organoids derived from human pluripotent stem cells (hPSCs) are valuable models for studying neurodevelopment, disease mechanisms, and therapeutic development. However, recognized limitations include the high variability of organoids across hPSC donor lines and experimental replicates. We report a 96-slitwell method for efficient, scalable, reproducible cortical organoid production. When hPSCs were cultured with controlled-release FGF2 and an SB431542 concentration appropriate for their TGFBR1 / ALK5 expression level, organoid cortical patterning and reproducibility were significantly improved. Well-patterned organoids included 16 neuronal and glial subtypes by single cell RNA sequencing (scRNA-seq), frequent neural progenitor rosettes and robust BCL11B+ and TBR1+ deep layer cortical neurons at 2 months by immunohistochemistry. In contrast, poorly-patterned organoids contain mesendoderm-related cells, identifiable by negative QC markers including COL1A2 . Using this improved protocol, we demonstrate increased sensitivity to study the impact of different MAPT mutations from patients with frontotemporal dementia (FTD), revealing early changes in key metabolic pathways.
13
Citation2
0
Save
0

Exifone is a Potent HDAC1 Activator with Neuroprotective Activity in Human Neuronal Models of Neurodegeneration

Debasis Patnaik et al.Mar 3, 2020
Genomic instability caused by a deficiency in the DNA damage response and repair has been linked to age-related cognitive decline and neurodegenerative disease. Preventing this loss of genomic integrity that ultimately leads to neuronal death may provide a broadly effective strategy to protect against multiple potential genotoxic stressors. Recently, the zinc-dependent, class I histone deacetylase HDAC1 has been identified as a critical protein for protecting neurons from deleterious effects mainly caused by double-strand DNA breaks in Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), and frontotemporal dementia (FTD). Translating these observations to a novel neuroprotective therapy for AD, ALS or FTD will benefit from the identification of small molecules capable of selectively increasing the deacetylase activity of HDAC1 over other structurally similar class I HDACs. Here, we demonstrate that exifone, a drug previously shown to be effective in treating cognitive decline associated with AD and Parkinson’s disease, the molecular mechanism of which has remained poorly understood, potently activates the deacetylase activity of HDAC1 and provides protection against genotoxic stress. We show that exifone acts as a mixed, non-essential activator of HDAC1 that is capable of binding to both free and substrate-bound enzyme resulting in an increased relative maximal rate of HDAC1-catalyzed deacetylation. Selectivity profiling and estimation of kinetic parameters using biolayer interferometry suggest HDAC1 is a preferential target compared to other class I HDACs and CDK5. Treatment of human induced pluripotent stem cell (iPSC)-derived neuronal cells resulted in a decrease of histone acetylation, consistent with an intracellular mechanism of deacetylase activation. Moreover, using tauopathy patient-derived iPSC neuronal models subject to oxidative stress through mitochondrial inhibition exifone treatment was neuroprotective. Taken together, these findings reveal exifone as a potent activator of HDAC1-mediated deacetylation, thereby offering a lead for novel therapeutic development aiming to protect genomic integrity in the context of neurodegeneration and aging.![Figure][1] [1]: pending:yes
1

Targeting tau mitigates mitochondrial fragmentation and oxidative stress in amyotrophic lateral sclerosis

Tiziana Petrozziello et al.Mar 22, 2021
Abstract Understanding the mechanisms underlying amyotrophic lateral sclerosis (ALS) is crucial for the development of new therapies. Recent evidence suggest that tau may be involved in ALS pathogenesis. Here, we demonstrated that hyperphosphorylated tau (pTau-S396) is mis-localized to synapses in human post-mortem motor cortex (mCTX) across ALS subtypes. Treatment with ALS synaptoneurosomes (SNs) derived from post-mortem mCTX, enriched in pTau-S396, increased oxidative stress, induced mitochondrial fragmentation, and altered mitochondrial connectivity in vitro . Furthermore, our findings revealed that pTau-S396 interacts with the pro-fission dynamin-related protein (DRP1), and similar to pTau-S396, DRP1 accumulated in ALS SNs across ALS subtypes. Lastly, reducing tau with a specific bifunctional degrader, QC-01-175, prevented ALS SNs-induced mitochondrial fragmentation and oxidative stress in vitro . Collectively, our findings suggest that increases in pTau-S396 may lead to mitochondrial fragmentation and oxidative stress in ALS and decreasing tau may provide a novel strategy to mitigate mitochondrial dysfunction in ALS. Graphical abstract pTau-S396 mis-localizes to synapses in ALS. ALS synaptoneurosomes (SNs), enriched in pTau-S396, increase oxidative stress and induce mitochondrial fragmentation in vitro . pTau-S396 interacts with the pro-fission GTPase DRP1 in ALS. Reducing tau with a specific degrader, QC-01-175, mitigates ALS SNs-induced mitochondrial fragmentation and increases in oxidative stress in vitro .
0

Cholesterol Dysregulation Drives Seed-Dependent Tau Aggregation in Patient Stem Cell-Derived Models of Tauopathy

Morrie Lam et al.Dec 12, 2023
Abstract Tauopathies are a class of neurodegenerative diseases characterized by the progressive misfolding and accumulation of pathological tau protein in focal regions of the brain, leading to insidious neurodegeneration. Abnormalities in cholesterol metabolism and homeostasis have also been implicated in various neurodegenerative diseases. However, the connection between cholesterol dysregulation and tau pathology remains largely unknown. To model and measure the impact of cholesterol dysregulation on tau, we utilized a combination of in vitro and ex vivo tau aggregation assays using an engineered tau biosensor cell line and human induced pluripotent stem cell (iPSC)-derived neuronal cultures from an individual harboring an autosomal dominant P301L tau mutation and from a healthy control. We demonstrate that excess cholesterol esters lead to an increased rate of tau aggregation in vitro and an increase in seed-dependent insoluble tau aggregates detected in the biosensor line. We observed a strong correlation between cholesterol ester concentration and the presence of high-molecular-weight, oligomeric tau species. Importantly, in tauopathy patient iPSC-derived neurons harboring a P301L tau mutation with endogenous forms of misfolded tau, we show that acute dysregulation of cholesterol homeostasis through acute exposure to human plasma-purified cholesterol esters formed by the linkage of fatty acids to the hydroxyl group of cholesterol leads to the rapid accumulation of phosphorylated tau. Conversely, treatment with the same cholesterol esters pool did not lead to subsequent accumulation of phosphorylated tau in control iPSC-derived neurons. Finally, treatment with a heterobifunctional, small-molecule degrader designed to selectively engage and catalyze the ubiquitination and proteasomal degradation of aberrant tau species prevented cholesterol ester-induced aggregation of tau in the biosensor cell line in a Cereblon E3 ligase-dependent manner. Degrader treatment also restored the resiliency of tauopathy patient-derived neurons towards cholesterol ester-induced tau aggregation phenotypes. Taken together, our study supports a key role of cholesterol dysregulation in tau aggregation. Moreover, it provides further pre-clinical validation of the therapeutic strategy of targeted protein degradation with heterobifunctional tau degraders for blocking tau seeding.