PS
Peter Sajjakulnukit
Author with expertise in Epigenetic Modifications and Their Functional Implications
University of Michigan–Ann Arbor
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
16
(63% Open Access)
Cited by:
21
h-index:
22
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Hyaluronic Acid Fuels Pancreatic Cancer Growth

Peter Kim et al.Oct 24, 2023
+14
S
C
P
Abstract Rewired metabolism is a hallmark of pancreatic ductal adenocarcinomas (PDA). Previously, we demonstrated that PDA cells enhance glycosylation precursor biogenesis through the hexosamine biosynthetic pathway (HBP) via activation of the rate limiting enzyme, glutamine-fructose 6-phosphate amidotransferase 1 (GFAT1). Here, we genetically ablated GFAT1 in PDA cell lines, which completely blocked proliferation in vitro and led to cell death. In contrast, GFAT1 knockout did not impair tumor growth, suggesting that cancer cells can maintain fidelity of glycosylation precursor pools by scavenging nutrients from the tumor microenvironment. Here, we show that hyaluronic acid (HA), an abundant carbohydrate polymer in pancreatic tumors composed of repeating N-acetyl-glucosamine (GlcNAc) and glucuronic acid sugars, can bypass GFAT1 to refuel the HBP via the GlcNAc salvage pathway. Furthermore, HA facilitates proliferation in nutrient-starved wild-type PDA. Together, these data show HA can serve as a nutrient fueling PDA metabolism beyond its previously appreciated structural and signaling roles.
31

Clonal Heterogeneity Supports Mitochondrial Metabolism in Pancreatic Cancer

Christopher Halbrook et al.Oct 24, 2023
+13
A
G
C
Summary Pancreatic ductal adenocarcinoma (PDA) is characterized by a heterogenous and densely fibrotic microenvironment. This limits functional vasculature and diffusion of nutrients through the tumor 1,2 . Accordingly, pancreatic cancer cells develop numerous metabolic adaptations to survive and proliferate in nutrient austere conditions 3-7 . Subtypes of PDA have been characterized by transcriptional and functional differences 8-12 , which have been reported to exist within the same tumor 13-15 . However, it remains unclear if this diversity extends to metabolic programming. Here, using a combination of metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses within neoplastic populations isolated from a single pancreatic tumor. Furthermore, these populations are poised for metabolic crosstalk, and in examining this, we find an unexpected role for asparagine in maintaining cell proliferation following mitochondrial inhibition. Functionally, when challenged by mitochondrial inhibition, asparagine supplementation increases intracellular levels of asparagine and aspartate, a rate limiting biosynthetic precursor 16-18 . Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes pancreatic tumors to mitochondrial targeting with phenformin. Together, these data extend the concept of metabolic diversity to neoplastic populations within individual tumors, while illustrating a new method of intratumoral communication that supports tumor fitness 19,20 . Finally, the combination of asparaginase with mitochondrial inhibition could provide a powerful new strategy for this difficult to treat disease.
36

The Pancreatic Tumor Microenvironment Compensates for Loss of GOT2

Samuel Kerk et al.Oct 24, 2023
+27
A
L
S
ABSTRACT The tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDA) restricts vascularization and, consequently, access to blood-derived nutrients and oxygen, which impacts tumor growth. Intracellular redox imbalance is another restraint on cellular proliferation, yet it is unknown if the TME contributes to the maintenance of redox homeostasis in PDA cells. Here, we demonstrate that the loss of mitochondrial glutamate-oxaloacetate transaminase 2 (GOT2), a component in the malate-aspartate shuttle, disturbs redox homeostasis and halts proliferation of PDA cells in vitro. In contrast, GOT2 inhibition has no effect on in vivo tumor growth or tumorigenesis in an autochthonous model. We propose that this discrepancy is explained by heterocellular pyruvate exchange from the TME, including from cancer associated fibroblasts. More broadly, pyruvate similarly confers resistance to inhibitors of mitochondrial respiration. Genetic or pharmacologic inhibition of pyruvate uptake or metabolism abrogated pyruvate-mediated alleviation of reductive stress from NADH buildup. In sum, this work describes a potential resistance mechanism mediated by metabolic crosstalk within the pancreatic TME. These findings have important implications for metabolic treatment strategies since several mitochondrial inhibitors are currently in clinical trials for PDA and other cancers.
40

Therapeutic targeting of differentiation state-dependent metabolic vulnerabilities in DIPG

Nneka Mbah et al.Oct 24, 2023
+17
C
A
N
ABSTRACT H3K27M diffuse intrinsic pontine gliomas (DIPG) exhibit cellular heterogeneity comprising less-differentiated, stem-like glioma cells that resemble oligodendrocyte precursors (OPC) and more differentiated astrocyte (AC)-like cells. H3K27M DIPG stem-like cells exhibit tumor-seeding capabilities in vivo , a feature lost or greatly diminished in the more differentiated AC-like cells. In this study, we established isogenic in vitro models of DIPG that closely recapitulated the OPC-like and AC-like phenotypes of DIPG cells. Using these tools, we performed transcriptomics, metabolomics, and bioenergetic profiling to identify metabolic programs operative in the different cellular states. From this, we defined new strategies to selectively target metabolic vulnerabilities within the specific tumor populations. Namely, we showed that the AC-like cells exhibited a more mesenchymal phenotype and were thus sensitized to ferroptotic cell death. In contrast, OPC-like cells upregulated cholesterol metabolism and mitochondrial oxidative phosphorylation (OXPHOS) and were accordingly more sensitive to statins and OXPHOS inhibitors. Additionally, statins and OXPHOS inhibitors showed efficacy and extended survival in preclinical orthotopic models established with stem-like H3K27M DIPG cells. Together, this study demonstrates that cellular subtypes within DIPGs harbor distinct metabolic vulnerabilities that can be uniquely and selectively targeted for therapeutic gain.
0

De novo purine metabolism is a metabolic vulnerability of cancers with low p16 expression

Naveen Tangudu et al.Sep 23, 2023
+13
H
R
N
p16 is a tumor suppressor encoded by the CDKN2A gene whose expression is lost in ~50% of all human cancers. In its canonical role, p16 inhibits the G1-S phase cell cycle progression through suppression of cyclin dependent kinases. Interestingly, p16 also has roles in metabolic reprogramming, and we previously published that loss of p16 promotes nucleotide synthesis via the pentose phosphate pathway. Whether other nucleotide metabolic genes and pathways are affected by p16/CDKN2A loss and if these can be specifically targeted in p16/CDKN2A-low tumors has not been previously explored. Using CRISPR KO libraries in multiple isogenic human and mouse melanoma cell lines, we determined that many nucleotide metabolism genes are negatively enriched in p16/CDKN2A knockdown cells compared to controls. Indeed, many of the genes that are required for survival in the context of low p16/CDKN2A expression based on our CRISPR screens are upregulated in p16 knockdown melanoma cells and those with endogenously low CDKN2A expression. We determined that cells with low p16/Cdkn2a expression are sensitive to multiple inhibitors of de novo purine synthesis, including anti-folates. Tumors with p16 knockdown were more sensitive to the anti-folate methotrexate in vivo than control tumors. Together, our data provide evidence to reevaluate the utility of these drugs in patients with p16/CDKN2A-low tumors as loss of p16/CDKN2A may provide a therapeutic window for these agents.
0
Paper
Citation2
0
Save
0

Macrophage Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer

Christopher Halbrook et al.May 7, 2020
+16
H
C
C
Pancreatic Ductal Adenocarcinoma (PDA) is characterized by abundant infiltration of tumor associated macrophages (TAMs). TAMs have been reported to drive resistance to gemcitabine, the front-line chemotherapy in PDA, though the mechanism of this resistance remains unclear. Profiling metabolite exchange, we demonstrate macrophages programmed by PDA cells release a spectrum of pyrimidine species. These include deoxycytidine, which inhibits gemcitabine through molecular competition at the level of drug uptake and metabolism. Accordingly, genetic or pharmacological depletion of TAMs in murine models of PDA sensitizes these tumors to gemcitabine. Consistent with this, patients with low macrophage burden demonstrate superior response to gemcitabine treatment. Additionally, we report pyrimidine release is a general function of anti-inflammatory myeloid cells, suggesting an unknown physiological role of pyrimidine exchange by immune cells.
0

Purine metabolism regulates DNA repair and therapy resistance in glioblastoma

Weihua Zhou et al.May 7, 2020
+21
A
Y
W
Intratumoral genomic heterogeneity in glioblastoma (GBM) is a barrier to overcoming therapy resistance, and new strategies that are effective independent of genotype are urgently needed. By correlating intracellular metabolite levels with radiation resistance across dozens of genomically-distinct models of GBM, we found that purine metabolites strongly correlated with radiation resistance. Inhibiting purine, but not pyrimidine, synthesis radiosensitized GBM cells and patient-derived neurospheres by impairing DNA repair in a nucleoside-dependent fashion. Likewise, administration of exogenous purine nucleosides protected sensitive GBM models from radiation by promoting DNA repair. Combining an FDA-approved inhibitor of de novo purine synthesis with radiation arrested growth in GBM xenograft models and depleted intratumoral guanylates. High expression of the rate-limiting enzyme of de novo GTP synthesis was associated with shorter survival in GBM patients. Together, these findings indicate that inhibiting de novo purine synthesis may be a promising strategy to overcome therapy resistance in this genomically heterogeneous disease.
0

Induction of pancreatic tumor-selective ferroptosis through modulation of cystine import

Michael Badgley et al.May 7, 2020
+27
H
D
M
Pancreatic ductal adenocarcinoma (PDA) is the third-leading cause of cancer mortality in the US and is highly resistant to classical, targeted, and immune therapies. We show that human PDA cells are dependent on the provision of exogenous cystine to avert a catastrophic accumulation of lipid reactive oxygen species (ROS) that, left unchecked, leads to ferroptotic cell death, both in vitro and in vivo. Using a dual-recombinase genetically engineered model, we found that acute deletion of Slc7a11 led to tumor-selective ferroptosis, tumor stabilizations/regressions, and extended overall survival. The mechanism of ferroptosis induction in PDA cells required the concerted depletion of both glutathione and coenzyme A, highlighting a novel branch of ferroptosis-relevant metabolism. Finally, we found that cystine depletion in vivo using the pre-IND agent cyst(e)inase phenocopied Slc7a11 deletion, inducing tumor-selective ferroptosis and disease stabilizations/regressions in the well-validated KPC model of PDA.
0

Small molecule activation of metabolic enzyme pyruvate kinase muscle isozyme 2, PKM2, provides photoreceptor neuroprotection

Thomas Wubben et al.May 7, 2020
+8
E
M
T
Photoreceptor cell death is the ultimate cause of vision loss in many retinal disorders, and there is an unmet need for neuroprotective modalities to improve photoreceptor survival. Similar to cancer cells, photoreceptors maintain pyruvate kinase muscle isoform 2 (PKM2) expression, which is a critical regulator in aerobic glycolysis. Unlike PKM1, which has constitutively high catalytic activity, PKM2 is under complex regulation. Recently, we demonstrated that genetically reprogramming photoreceptor metabolism via PKM2-to-PKM1 substitution is a promising neuroprotective strategy. Here, we explored the neuroprotective effects of pharmacologically activating PKM2 via ML-265, a small molecule activator of PKM2, during acute outer retinal stress. We found that ML-265 increased PKM2 activity in 661W cells and in vivo in rat eyes without affecting the expression of genes involved in glucose metabolism. ML-265 treatment did, however, alter metabolic intermediates of glucose metabolism and those necessary for biosynthesis in cultured cells. Long-term exposure to ML-265 did not result in decreased photoreceptor function or survival under baseline conditions. Notably, though, ML-265-treatment did reduce entrance into the apoptotic cascade in in vitro and in vivo models of outer retinal stress. These data suggest that reprogramming metabolism via activation of PKM2 is a novel, and promising, therapeutic strategy for photoreceptor neuroprotection.
0

The deacylase SIRT5 supports melanoma viability by regulating chromatin dynamics

William Giblin et al.Jun 11, 2024
+34
A
L
W
Abstract Cutaneous melanoma remains the most lethal skin cancer, and ranks third among all malignancies in terms of years of life lost. Despite the advent of immune checkpoint and targeted therapies, only roughly half of patients with advanced melanoma achieves a durable remission. SIRT5 is a member of the sirtuin family of protein deacylases that regulate metabolism and other biological processes. Germline Sirt5 deficiency is associated with mild phenotypes in mice. Here we show that SIRT5 is required for proliferation and survival across all cutaneous melanoma genotypes tested, as well as uveal melanoma, a genetically distinct melanoma subtype that arises in the eye and is incurable once metastatic. Likewise, SIRT5 is required for efficient tumor formation by melanoma xenografts and in an autochthonous mouse Braf;Pten -driven melanoma model. Via metabolite and transcriptomic analyses, we find that SIRT5 is required to maintain histone acetylation and methylation levels in melanoma cells, thereby promoting proper gene expression. SIRT5-dependent genes notably include MITF , a key lineage-specific survival oncogene in melanoma, and the c-MYC proto-oncogene. SIRT5 may represent a novel, druggable genotype-independent addiction in melanoma.
Load More