KA
Katherine Alexander
Author with expertise in Natural Killer Cells in Immunity
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
2,265
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion

Omar Khan et al.Jun 17, 2019
Exhausted CD8+ T (Tex) cells in chronic infections and cancer have limited effector function, high co-expression of inhibitory receptors and extensive transcriptional changes compared with effector (Teff) or memory (Tmem) CD8+ T cells. Tex cells are important clinical targets of checkpoint blockade and other immunotherapies. Epigenetically, Tex cells are a distinct immune subset, with a unique chromatin landscape compared with Teff and Tmem cells. However, the mechanisms that govern the transcriptional and epigenetic development of Tex cells remain unknown. Here we identify the HMG-box transcription factor TOX as a central regulator of Tex cells in mice. TOX is largely dispensable for the formation of Teff and Tmem cells, but it is critical for exhaustion: in the absence of TOX, Tex cells do not form. TOX is induced by calcineurin and NFAT2, and operates in a feed-forward loop in which it becomes calcineurin-independent and sustained in Tex cells. Robust expression of TOX therefore results in commitment to Tex cells by translating persistent stimulation into a distinct Tex cell transcriptional and epigenetic developmental program. The transcription factor TOX is a central regulator of the transcriptional and epigenetic development of exhausted T cells.
0
Citation1,071
0
Save
0

Disruption of TET2 promotes the therapeutic efficacy of CD19-targeted T cells

Joseph Fraietta et al.May 25, 2018
Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1–3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient’s second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient’s CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies. Genetically engineered T cells that induced remission in a patient with chronic lymphocytic leukaemia were found to have disruption of the TET2 gene, which caused T cell changes that potentiated their anti-tumour effects.
0
Citation631
0
Save
0

CTCF/cohesin organize the ground state of chromatin-nuclear speckle association

Ruofan Yu et al.Jul 22, 2023
Abstract The interchromatin space in the cell nucleus contains various membrane-less nuclear bodies. Recent findings indicate that nuclear speckles, comprising a distinct nuclear body, exhibit interactions with certain chromatin regions in a ground state. Key questions are how this ground state of chromatin-nuclear speckle association is established and what are the gene regulatory roles of this layer of nuclear organization. We report here that chromatin structural factors CTCF and cohesin are required for full ground state association between DNA and nuclear speckles. Disruption of ground state DNA-speckle contacts via either CTCF depletion or cohesin depletion had minor effects on basal level expression of speckle-associated genes, however we show strong negative effects on stimulus-dependent induction of speckle-associated genes. We identified a putative speckle targeting motif (STM) within cohesin subunit RAD21 and demonstrated that the STM is required for chromatin-nuclear speckle association. In contrast to reduction of CTCF or RAD21, depletion of the cohesin releasing factor WAPL stabilized cohesin on chromatin and DNA-speckle contacts, resulting in enhanced inducibility of speckle-associated genes. In addition, we observed disruption of chromatin-nuclear speckle association in patient derived cells with Cornelia de Lange syndrome (CdLS), a congenital neurodevelopmental diagnosis involving defective cohesin pathways, thus revealing nuclear speckles as an avenue for therapeutic inquiry. In summary, our findings reveal a mechanism to establish the ground organizational state of chromatin-speckle association, to promote gene inducibility, and with relevance to human disease.
0
Citation2
0
Save
0

Imprinted gene expression at the Dlk1-Dio3 cluster is controlled by both maternal and paternal IG-DMRs in a tissue-specific fashion.

Katherine Alexander et al.Jan 31, 2019
Imprinting at the Dlk1-Dio3 cluster is controlled by the IG-DMR, an imprinting control region differentially methylated between maternal and paternal chromosomes. The maternal IG-DMR is essential for imprinting control, functioning as a cis enhancer element. Meanwhile, DNA methylation at the paternal IG-DMR is thought to prevent enhancer activity. To explore whether suppression of enhancer activity at the methylated IG-DMR requires the transcriptional repressor TRIM28, we analyzed Trim28chatwo embryos and performed epistatic experiments with IG-DMR deletion mutants. We found that while TRIM28 regulates the enhancer properties of the paternal IG-DMR, it also controls imprinting through other mechanisms. Additionally, we found that the paternal IG-DMR, previously deemed dispensable for imprinting, is required in certain tissues, demonstrating that imprinting is regulated in a tissue-specific manner. Using PRO-seq to analyze nascent transcription, we identified 30 novel transcribed regulatory elements, including 23 that are tissue-specific. These results demonstrate that different tissues have a distinctive regulatory landscape at the Dlk1-Dio3 cluster and provide insight into potential mechanisms of tissue-specific imprinting control. Together, our findings challenge the premise that Dlk1-Dio3 imprinting is regulated through a single mechanism and demonstrate that different tissues use distinct strategies to accomplish imprinted gene expression.