RY
Rui Yang
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
8
h-index:
2
/
i10-index:
1
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Epiphany: predicting Hi-C contact maps from 1D epigenomic signals

Rui Yang et al.Dec 3, 2021
+5
V
A
R
Abstract Recent deep learning models that predict the Hi-C contact map from DNA sequence achieve promising accuracy but cannot generalize to new cell types and indeed do not capture cell-type-specific differences among training cell types. We propose Epiphany, a neural network to predict cell-type-specific Hi-C contact maps from five epigenomic tracks that are already available in hundreds of cell types and tissues: DNase I hypersensitive sites and ChIP-seq for CTCF, H3K27ac, H3K27me3, and H3K4me3. Epiphany uses 1D convolutional layers to learn local representations from the input tracks, a bidirectional long short-term memory (Bi-LSTM) layers to capture long term dependencies along the epigenome, as well as a generative adversarial network (GAN) architecture to encourage contact map realism. To improve the usability of predicted contact matrices, we trained and evaluated models using multiple normalization and matrix balancing techniques including KR, ICE, and HiC-DC+ Z-score and observed-over-expected count ratio. Epiphany is trained with a combination of MSE and adversarial (i.a., a GAN) loss to enhance its ability to produce realistic Hi-C contact maps for downstream analysis. Epiphany shows robust performance and generalization to held-out chromosomes within and across cell types and species, and its predicted contact matrices yield accurate TAD and significant interaction calls. At inference time, Epiphany can be used to study the contribution of specific epigenomic peaks to 3D architecture and to predict the structural changes caused by perturbations of epigenomic signals.
1
Citation8
0
Save
1

ChromaFold predicts the 3D contact map from single-cell chromatin accessibility

Vianne Gao et al.Jul 28, 2023
+21
Z
M
V
The identification of cell-type-specific 3D chromatin interactions between regulatory elements can help to decipher gene regulation and to interpret the function of disease-associated non-coding variants. However, current chromosome conformation capture (3C) technologies are unable to resolve interactions at this resolution when only small numbers of cells are available as input. We therefore present ChromaFold, a deep learning model that predicts 3D contact maps and regulatory interactions from single-cell ATAC sequencing (scATAC-seq) data alone. ChromaFold uses pseudobulk chromatin accessibility, co-accessibility profiles across metacells, and predicted CTCF motif tracks as input features and employs a lightweight architecture to enable training on standard GPUs. Once trained on paired scATAC-seq and Hi-C data in human cell lines and tissues, ChromaFold can accurately predict both the 3D contact map and peak-level interactions across diverse human and mouse test cell types. In benchmarking against a recent deep learning method that uses bulk ATAC-seq, DNA sequence, and CTCF ChIP-seq to make cell-type-specific predictions, ChromaFold yields superior prediction performance when including CTCF ChIP-seq data as an input and comparable performance without. Finally, fine-tuning ChromaFold on paired scATAC-seq and Hi-C in a complex tissue enables deconvolution of chromatin interactions across cell subpopulations. ChromaFold thus achieves state-of-the-art prediction of 3D contact maps and regulatory interactions using scATAC-seq alone as input data, enabling accurate inference of cell-type-specific interactions in settings where 3C-based assays are infeasible.