PZ
Pei Zhou
Author with expertise in Genomics and Pathogenicity of Plant Pathogenic Bacteria
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
545
h-index:
51
/
i10-index:
127
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Drosophila PIWI associates with chromatin and interacts directly with HP1a

Brent Brower‐Toland et al.Sep 15, 2007
The interface between cellular systems involving small noncoding RNAs and epigenetic change remains largely unexplored in metazoans. RNA-induced silencing systems have the potential to target particular regions of the genome for epigenetic change by locating specific sequences and recruiting chromatin modifiers. Noting that several genes encoding RNA silencing components have been implicated in epigenetic regulation in Drosophila , we sought a direct link between the RNA silencing system and heterochromatin components. Here we show that PIWI, an ARGONAUTE/PIWI protein family member that binds to Piwi-interacting RNAs (piRNAs), strongly and specifically interacts with heterochromatin protein 1a (HP1a), a central player in heterochromatic gene silencing. The HP1a dimer binds a PxVxL-type motif in the N-terminal domain of PIWI. This motif is required in fruit flies for normal silencing of transgenes embedded in heterochromatin. We also demonstrate that PIWI, like HP1a, is itself a chromatin-associated protein whose distribution in polytene chromosomes overlaps with HP1a and appears to be RNA dependent. These findings implicate a direct interaction between the PIWI-mediated small RNA mechanism and heterochromatin-forming pathways in determining the epigenetic state of the fly genome.
0
Citation324
0
Save
0

Bacterial pathogens deliver water- and solute-permeable channels to plant cells

Kinya Nomura et al.Sep 13, 2023
Many animal- and plant-pathogenic bacteria use a type III secretion system to deliver effector proteins into host cells1,2. Elucidation of how these effector proteins function in host cells is critical for understanding infectious diseases in animals and plants3-5. The widely conserved AvrE-family effectors, including DspE in Erwinia amylovora and AvrE in Pseudomonas syringae, have a central role in the pathogenesis of diverse phytopathogenic bacteria6. These conserved effectors are involved in the induction of 'water soaking' and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE-family effectors fold into a β-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in inward and outward currents, permeability to water and osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine dendrimers as inhibitors of the DspE/AvrE channels. Notably, polyamidoamines broadly inhibit AvrE and DspE virulence activities in Xenopus oocytes and during E. amylovora and P. syringae infections. Thus, we have unravelled the biochemical function of a centrally important family of bacterial effectors with broad conceptual and practical implications in the study of bacterial pathogenesis.
0
Citation12
-1
Save
49

Bacterial pathogens deliver water/solute-permeable channels as a virulence strategy

Kinya Nomura et al.Jul 29, 2023
Many animal and plant pathogenic bacteria utilize a type III secretion system to deliver effector proteins into the host cell 1,2 . Elucidation of how these effector proteins function in the host cell is critical for understanding infectious diseases in animals and plants 3-5 . The widely conserved AvrE/DspE-family effectors play a central role in the pathogenesis of diverse phytopathogenic bacteria 6 . These conserved effectors are involved in the induction of "water-soaking" and host cell death that are conducive to bacterial multiplication in infected tissues. However, the exact biochemical functions of AvrE/DspE-family effectors have been recalcitrant to mechanistic understanding for three decades. Here we show that AvrE/DspE-family effectors fold into a β-barrel structure that resembles bacterial porins. Expression of AvrE and DspE in Xenopus oocytes results in (i) inward and outward currents, (ii) permeability to water and (iii) osmolarity-dependent oocyte swelling and bursting. Liposome reconstitution confirmed that the DspE channel alone is sufficient to allow the passage of small molecules such as fluorescein dye. Targeted screening of chemical blockers based on the predicted pore size (15-20 Å) of the DspE channel identified polyamidoamine (PAMAM) dendrimers as inhibitors of the DspE/AvrE channels. Remarkably, PAMAMs broadly inhibit AvrE/DspE virulence activities in Xenopus oocytes and during Erwinia amylovora and Pseudomonas syringae infections. Thus, we have unraveled the enigmatic function of a centrally important family of bacterial effectors with significant conceptual and practical implications in the study of bacterial pathogenesis.
1

Direct photoresponsive inhibition of a p53-like transcription activation domain in PIF3 by Arabidopsis phytochrome B

Chan Yoo et al.May 11, 2021
ABSTRACT Phytochrome B (PHYB) triggers diverse light responses in Arabidopsis by binding to a group of antagonistically acting PHYTOCHROME-INTERACTING transcription FACTORs (PIFs) to promote PIF degradation, consequently downregulating PIF target genes. However, whether PHYB directly controls the transactivation activity of PIFs remains ambiguous. Here we show that the prototypic PIF, PIF3, possesses a p53-like transcription activation domain (TAD) consisting of a sequence-specific, hydrophobic activator motif surrounded by acidic residues. A PIF3mTAD mutant in which the activator motif is replaced with alanines fails to activate PIF3 target genes in Arabidopsis in dark, light, and shade conditions, validating the in vivo functions of the PIF3 TAD. Intriguingly, binding of PHYB’s N-terminal photosensory module to the PHYB-binding site adjacent to the TAD inhibits its transactivation activity. These results unveil a photoresponsive transcriptional switching mechanism in which photoactivated PHYB directly masks the transactivation activity of PIF3. Our study also suggests the unexpected conservation of sequence-specific TADs between the animal and plant kingdoms.
0

Mammalian stringent-like response mediated by the cytosolic NADPH phosphatase MESH1

Chien‐Kuang Ding et al.May 17, 2018
Nutrient deprivation triggers stringent response in bacteria, allowing rapid reallocation of resources from proliferation toward stress survival. Critical to this process is the accumulation/degradation of (p)ppGpp regulated by the RelA/SpoT homologues. While mammalian genomes encode MESH1, a homologue of the bacterial (p)ppGpp hydrolase SpoT, neither (p)ppGpp nor its synthetase has been identified in mammalian cells. Therefore, the function of MESH1 remains a mystery. Here, we report that human MESH1 is an efficient cytosolic NADPH phosphatase, an unexpected enzymatic activity that is captured by the crystal structure of the MESH1-NADPH complex. MESH1 depletion promotes cell survival under ferroptosis-inducing conditions by sustaining the level of NADPH, an effect that is reversed by the simultaneous depletion of the cytosolic NAD(H) kinase, NADK, but not its mitochondrial counterpart NADK2. Importantly, MESH1 depletion also triggers extensive transcriptional changes that are distinct from the canonical integrated stress response but resemble the bacterial stringent response, implicating MESH1 in a previously uncharacterized stress response in mammalian cells.
0

MaUGT79confers drought tolerance by regulating scopolin biosynthesis in plants

Zengqiang Duan et al.Nov 21, 2023
Abstract The coumarin scopoletin and its glycosylated form scopolin constitute a vast class of natural products that are considered to be high-value compounds, distributed widely in the plant kingdom, they help plants adapt to environmental stresses. However, the underlying molecular mechanism of how scopolin is involved in the regulation of plant drought tolerance remains largely unexplored. Here, UDP-glycosyltransferase 79 (MaUGT79) was genetically mapped as the target gene by bulk segregant analysis sequencing (BSA-seq) from two Melilotus albus near-isogenic lines (NILs). MaUGT79 exhibits glucosyltransferase activity toward scopoletin. The expression of MaUGT79 is induced by drought stress and it was found to mediate scopolin accumulation and reactive oxygen species (ROS) scavenging under drought stress. Moreover, the transcription of MaUGT79 was demonstrated to be directly and positively regulated by MaMYB4, which is a key integrator of both scopolin biosynthesis and drought tolerance. Collectively, this study reveals that MaMYB4 is a positive regulator in drought stress by targeting the MaUGT79 promoter and activating its expression to coordinately mediate scopolin biosynthesis and drought tolerance, providing insights into the regulatory mechanism for plant growth adaption to environmental changes through accumulation of scopolin.
Load More