QH
Qing Hu
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(63% Open Access)
Cited by:
411
h-index:
21
/
i10-index:
37
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Bacterial Community Shift Drives Antibiotic Resistance Promotion during Drinking Water Chlorination

Shuyu Jia et al.Sep 23, 2015
For comprehensive insights into the effects of chlorination, a widely used disinfection technology, on bacterial community and antibiotic resistome in drinking water, this study applied high-throughput sequencing and metagenomic approaches to investigate the changing patterns of antibiotic resistance genes (ARGs) and bacterial community in a drinking water treatment and distribution system. At genus level, chlorination could effectively remove Methylophilus, Methylotenera, Limnobacter, and Polynucleobacter, while increase the relative abundance of Pseudomonas, Acidovorax, Sphingomonas, Pleomonas, and Undibacterium in the drinking water. A total of 151 ARGs within 15 types were detectable in the drinking water, and chlorination evidently increased their total relative abundance while reduced their diversity in the opportunistic bacteria (p < 0.05). Residual chlorine was identified as the key contributing factor driving the bacterial community shift and resistome alteration. As the dominant persistent ARGs in the treatment and distribution system, multidrug resistance genes (mainly encoding resistance-nodulation-cell division transportation system) and bacitracin resistance gene bacA were mainly carried by chlorine-resistant bacteria Pseudomonas and Acidovorax, which mainly contributed to the ARGs abundance increase. The strong correlation between bacterial community shift and antibiotic resistome alteration observed in this study may shed new light on the mechanism behind the chlorination effects on antibiotic resistance.
0
Citation408
0
Save
0

Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors

Qing Hu et al.Aug 11, 2023
ABSTRACT Errors in mitosis can generate micronuclei that entrap mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through a process termed chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates a spectrum of simple and complex genomic rearrangements that are associated with human cancers and disorders. How specific DSB repair pathways recognize and process these lesions remains poorly understood. Here we used CRISPR/Cas9 to systematically inactivate distinct DSB processing or repair pathways and interrogated the rearrangement landscape of fragmented chromosomes from micronuclei. Deletion of canonical non-homologous end joining (NHEJ) components, including DNA-PKcs, LIG4, and XLF, substantially reduced the formation of complex rearrangements and shifted the rearrangement landscape toward simple alterations without the characteristic patterns of cancer-associated chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within micronuclei bodies (MN bodies) and undergo successful ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments were rarely engaged by polymerase theta-mediated alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics and persistent 53BP1-labeled MN bodies in the interphase nucleus. Prolonged DNA damage signaling from unrepaired fragments ultimately triggered cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements following chromothripsis from mitotic errors.
0
Citation2
0
Save
0

Non-homologous end joining shapes the genomic rearrangement landscape of chromothripsis from mitotic errors

Qing Hu et al.Jul 4, 2024
Abstract Mitotic errors generate micronuclei entrapping mis-segregated chromosomes, which are susceptible to catastrophic fragmentation through chromothripsis. The reassembly of fragmented chromosomes by error-prone DNA double-strand break (DSB) repair generates diverse genomic rearrangements associated with human diseases. How specific repair pathways recognize and process these lesions remains poorly understood. Here we use CRISPR/Cas9 to systematically inactivate distinct DSB repair pathways and interrogate the rearrangement landscape of fragmented chromosomes. Deletion of canonical non-homologous end joining (NHEJ) components substantially reduces complex rearrangements and shifts the rearrangement landscape toward simple alterations without the characteristic patterns of chromothripsis. Following reincorporation into the nucleus, fragmented chromosomes localize within sub-nuclear micronuclei bodies (MN bodies) and undergo ligation by NHEJ within a single cell cycle. In the absence of NHEJ, chromosome fragments are rarely engaged by alternative end-joining or recombination-based mechanisms, resulting in delayed repair kinetics, persistent 53BP1-labeled MN bodies, and cell cycle arrest. Thus, we provide evidence supporting NHEJ as the exclusive DSB repair pathway generating complex rearrangements from mitotic errors.
0
Citation1
0
Save
9

Restoration of deficient DNA Repair Genes Mitigates Genome Instability and Increases Productivity of Chinese Hamster Ovary Cells

Philipp Spahn et al.Jan 7, 2021
Abstract Chinese Hamster Ovary (CHO) cells are the primary host used for manufacturing of therapeutic proteins. However, production instability of high-titer cell lines is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein titer. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide polymorphisms (SNPs) in DNA repair genes. Comparison with other mammalian cells confirmed DNA repair is compromised in CHO. Restoration of key DNA repair genes by SNP reversal or expression of intact cDNAs improved DNA repair and genome stability. Moreover, the restoration of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show for the first time that correction of key DNA repair genes yields considerable improvements in stability and protein expression in CHO, and provide new opportunities for cell line development and a more efficient and sustainable production of therapeutic proteins.
0

The Fanconi anemia pathway induces chromothripsis and ecDNA-driven cancer drug resistance

Justin Engel et al.Aug 1, 2024
Chromothripsis describes the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei. Although micronuclei accumulate DNA double-strand breaks and replication defects throughout interphase, how chromosomes undergo shattering remains unresolved. Using CRISPR-Cas9 screens, we identify a non-canonical role of the Fanconi anemia (FA) pathway as a driver of chromothripsis. Inactivation of the FA pathway suppresses chromosome shattering during mitosis without impacting interphase-associated defects within micronuclei. Mono-ubiquitination of FANCI-FANCD2 by the FA core complex promotes its mitotic engagement with under-replicated micronuclear chromosomes. The structure-selective SLX4-XPF-ERCC1 endonuclease subsequently induces large-scale nucleolytic cleavage of persistent DNA replication intermediates, which stimulates POLD3-dependent mitotic DNA synthesis to prime shattered fragments for reassembly in the ensuing cell cycle. Notably, FA-pathway-induced chromothripsis generates complex genomic rearrangements and extrachromosomal DNA that confer acquired resistance to anti-cancer therapies. Our findings demonstrate how pathological activation of a central DNA repair mechanism paradoxically triggers cancer genome evolution through chromothripsis.
79

Mitotic clustering of pulverized chromosomes from micronuclei

Yu-Fen Lin et al.Jul 20, 2022
Complex genome rearrangements can be generated by the catastrophic shattering of mis-segregated chromosomes trapped within micronuclei through a process known as chromothripsis. Since each chromosome harbors a single centromere, how acentric fragments derived from shattered chromosomes are inherited between daughter cells during mitosis remains unknown. Here we tracked micronucleated chromosomes by live-cell imaging and show that acentric fragments cluster in close spatial proximity throughout mitosis for biased partitioning to a single daughter cell. Mechanistically, the CIP2A-TOPB1 complex prematurely associates with DNA lesions within ruptured micronuclei during interphase, which poises chromosome fragments for clustering upon mitotic entry. Inactivation of CIP2A or TOPBP1 caused pulverized chromosomes to untether and disperse throughout the mitotic cell, consequently resulting in the mis-accumulation of DNA fragments in the cytoplasm. The inheritance of shattered chromosomes by a single daughter cell suggests that micronucleation can drive complex rearrangements that lack the DNA copy number oscillations characteristic of canonical chromothripsis. Comprehensive analysis of pan-cancer whole-genome sequencing data revealed clusters of DNA copy number-neutral rearrangements – termed balanced chromothripsis – across diverse cancer types resulting in the acquisition of known driver events. Thus, distinct patterns of chromothripsis can be explained by the spatial mitotic clustering of pulverized chromosomes from micronuclei.