AS
Aditi Singh
Author with expertise in Global Diversity of Microbial Eukaryotes and Their Evolution
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
576
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Ingested double-stranded RNAs can act as species-specific insecticides

Steve Whyard et al.Oct 7, 2009
A serious shortcoming of many insecticides is that they can kill non-target species. To address this issue, we harnessed the sequence specificity of RNA interference (RNAi) to design orally-delivered double-stranded (ds) RNAs that selectively killed target species. Fruit flies (Drosophila melanogaster), flour beetles (Tribolium castaneum), pea aphids (Acyrthosiphon pisum), and tobacco hornworms (Manduca sexta) were selectively killed when fed species-specific dsRNA targeting vATPase transcripts. We also demonstrate that even closely related species can be selectively killed by feeding on dsRNAs that target the more variable regions of genes, such as the 3′ untranslated regions (UTRs): four species of the genus Drosophila were selectively killed by feeding on short (<40 nt) dsRNAs that targeted the 3′ UTR of the γ-tubulin gene. For the aphid nymphs and beetle and moth larvae, dsRNA could simply be dissolved into their diets, but to induce RNAi in the drosophilid species, the dsRNAs needed to be encapsulated in liposomes to help facilitate uptake of the dsRNA. This is the first demonstration of RNAi following ingestion of dsRNA in all of the species tested, and the method offers promise of both higher throughput RNAi screens and the development of a new generation of species-specific insecticides.
0
Citation566
0
Save
22

RNA-mediated nucleosome depletion is required for elimination of transposon-derived DNA

Aditi Singh et al.Jan 5, 2022
Abstract Small RNAs are known to mediate silencing of transposable elements and other genomic loci, increasing nucleosome density and preventing undesirable gene expression. Post-zygotic development of the Paramecium somatic genome requires elimination of thousands of transposon remnants (IESs) and transposable elements that are scattered throughout the germline genome (Garnier et al. 2004). The elimination process is guided by Piwi-associated small RNAs and leads to precise cleavage at IES boundaries (Bouhouche et al. 2011; Furrer et al. 2017). Previous research suggests that small RNAs induce heterochromatin formation within IESs, which, in turn, is required for DNA elimination (Liu et al. 2007). Here we show that IES recognition and precise excision is facilitated by recruitment of a homolog of a chromatin remodeler ISWI, which depletes target genomic regions of nucleosomes, making the chromatin accessible for DNA cleavage. ISWI knockdown in Paramecium leads to pronounced inhibition of DNA elimination. Furthermore, nucleosome profiling indicates that ISWI is required for IES elimination in nucleosome-dense genomic regions, while other IESs do not require small RNAs or ISWI for excision. ISWI silencing notably also reduces DNA elimination precision, resulting in aberrant excision at alternative IES boundaries. In summary, we demonstrate that chromatin remodeling that increases DNA accessibility together with small RNAs are necessary for efficient and precise DNA elimination in Paramecium .
22
Citation2
0
Save
34

Karyorelict ciliates use an ambiguous genetic code with context-dependent stop/sense codons

Brandon Seah et al.Apr 12, 2022
A bstract In ambiguous stop/sense genetic codes, the stop codon(s) not only terminate translation but can also encode amino acids. Such codes have evolved at least four times in eukaryotes, twice among ciliates ( Condylostoma magnum and Parduczia sp.). These have appeared to be isolated cases whose next closest relatives use conventional stop codons. However, little genomic data have been published for the Karyorelictea, the ciliate class that contains Parduczia sp., and previous studies may have overlooked ambiguous codes because of their apparent rarity. We therefore analyzed single-cell transcriptomes from four of the six karyorelict families to determine their genetic codes. Reassignment of canonical stops to sense codons was inferred from codon frequencies in conserved protein domains, while the actual stop codon was predicted from full-length transcripts with intact 3’-untranslated regions (3’-UTRs). We found that all available karyorelicts use the Parduczia code, where canonical stops UAA and UAG are reassigned to glutamine, and UGA encodes either tryptophan or stop. Furthermore, a small minority of transcripts may use an ambiguous stop-UAA instead of stop-UGA. Given the ubiquity of karyorelicts in marine coastal sediments, ambiguous genetic codes are not mere marginal curiosities but a defining feature of a globally distributed and diverse group of eukaryotes.
34
Citation1
0
Save
0

Two paralogous PHD finger proteins participate inParamecium tetraurelia’s natural genome editing

Lilia Häußermann et al.Jan 23, 2024
Abstract The unicellular eukaryote Paramecium tetraurelia contains functionally distinct nuclei: germline micronuclei (MICs) and a somatic macronucleus (MAC). During sexual reproduction, the MIC genome is reorganized into a new MAC genome and the old MAC is lost. Almost 45,000 unique Internal Eliminated Sequences (IESs) distributed throughout the genome require precise excision to guarantee a functional new MAC genome. Here, we characterize a pair of paralogous PHD finger proteins involved in DNA elimination. DevPF1, the early-expressed paralog, is present in only some of the gametic and post-zygotic nuclei during meiosis. Both DevPF1 and DevPF2 localize in the new developing MACs, where IESs excision occurs. In DevPF2 knockdown (KD) long IESs are preferentially retained and late-expressed small RNAs decrease; no length preference for retained IESs was observed in DevPF1 -KD and development-specific small RNAs were abolished. The expression of at least two genes from the new MAC with roles in genome reorganization seems to be influenced by DevPF1- and DevPF2 -KD. Thus, both PHD fingers are crucial for new MAC genome development, with distinct functions, potentially via regulation of non-coding and coding transcription in the MICs and new MACs.
0

Nuclear dualism without extensive DNA elimination in the ciliate Loxodes magnus

Brandon Seah et al.Jan 1, 2023
Ciliates are unicellular eukaryotes with two distinct kinds of nuclei in each cell: transcriptionally active somatic macronuclei (MAC) and silent germline micronuclei (MIC). In the best-studied model species, both nuclei can divide asexually, but only germline MICs participate in meiosis, karyogamy, and development into new MACs. During MIC-to-MAC development, thousands of mobile element relics in the germline, called internally eliminated sequences (IESs), are excised. This genome editing enables IESs to persist by shielding them from somatic natural selection. Editing itself is a costly, time-consuming process, hypothetically maintained by evolutionary addiction. Loxodes magnus and its relatives (class Karyorelictea) are cytologically unusual because their MACs do not divide asexually, but must develop anew from mitotically generated MIC copies every cell division. Here, we report that Loxodes genome development is also unconventional. We found no canonical germline-limited IESs in Loxodes despite careful purification and long-read sequencing of MICs and MACs. The k-mer content of these nuclei overlapped, and indels found by read mapping were consistent with allele variants rather than IESs. Two other hallmarks of genome editing--domesticated DDE-family transposases and editing-associated small RNAs--were also absent. Nonetheless, histone marks, nucleosome and DNA N6-methyladenosine distributions suggest that MACs are actively transcribed and MICs inactive in vegetative Loxodes cells, like other ciliates. Both genomes, not only the MIC, were large and replete with retrotransposon sequences. Given the costs associated with genome editing, we hypothesize that karyorelicteans like Loxodes have lost or streamlined editing during MIC-to-MAC development, and have found a way out of the addictive cycle.
7

How did UGA codon translation as tryptophan evolve in certain ciliates? A critique of Kachale et al. 2023 Nature

Estienne Swart et al.Jan 1, 2023
Ciliates are a widespread clade of microbial eukaryotes with the greatest diversity of nuclear genetic codes (at least eight) following a recent addition1. All non-standard ciliate genetic codes involve stop codon reassignments1,2,3. Two of these codes are ambiguous1-3, with "stop" codons either translated or terminating translation depending on their context2,3. Ambiguous genetic codes have arisen not only in ciliates, but also independently in trypanosomatids from the genus Blastocrithidia4 and an alveolate species from the genus Amoebophrya5. Two ambiguous genetic codes in ciliates share translation of UGA "stop" codons as tryptophan with Blastocrithidia and the Amoebophrya species. tRNA genes with complementary anticodons to reassigned UAA and UAG stop codons have invariably been found in ciliate species that translate these codons1,2. Furthermore, though a UGA-cognate tRNACysUCA was reported in Euplotes6, a ciliate genus that translates UGA as cysteine, vexingly, no nuclear genome-encoded tRNATrpUCA has been found in ciliate species with UGA tryptophan codons. Recently, Kachale et al. provided evidence for UGA translation as tryptophan in Blastocrithidia nonstop and the ciliate Condylostoma magnum using 4 base pair anticodon stem (AS) near-cognate tryptophan tRNATrpCCA9s, rather than the typical 5 base pair stem tRNAs7. New tRNA data we report from additional ciliates bolsters this hypothesis. Kachale et al. also hypothesised that a particular amino acid substitution in the key stop codon recognition protein, eRF1 (eukaryotic Release Factor 1), favours translation of UGA as tryptophan instead of termination7. Contrary to Kachale et al, we propose such substitutions favouring reduced eRF1 competition enhancing 9stop9 codon translation do not need to occur concomitantly with tRNA alterations or acquisitions to evolve new genetic codes via stop codon reassignment. We report multiple instances of the substitution investigated in Kachale et al. 2023 that have not led to UGA translation, and multiple ciliate species with UGA tryptophan translation but without the substitution, indicating it is not necessary. Consistent with the ambiguous intermediate hypothesis for genetic code evolution, experimental evidence and our observations suggest continued potential ciliate eRF1-tRNA competition.