BB
Brian Boyle
Author with expertise in Population Genetic Structure and Dynamics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
2
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Genomic diversity of wild and cultured Yesso scallopMizuhopecten yessoensisfrom Japan and Canada

Ben Sutherland et al.Jun 1, 2023
Abstract The Yesso scallop Mizuhopecten yessoensis is an important aquaculture species that was introduced to Western Canada from Japan to establish an economically viable scallop farming industry. This highly fecund species has been propagated in Canadian aquaculture hatcheries for the past 40 years, raising questions about genetic diversity and genetic differences among hatchery stocks. In this study, we compare cultured Canadian and wild Japanese populations of Yesso scallop using double-digest restriction site-associated DNA (ddRAD)-sequencing to genotype 21,048 variants in 71 wild-caught scallops from Japan, 65 scallops from the Vancouver Island University breeding population, and 37 scallops obtained from a commercial farm off Vancouver Island, British Columbia. The wild scallops are largely comprised of equally unrelated individuals, whereas cultured scallops are comprised of multiple families of related individuals. The polymorphism rate estimated in wild scallops was 1.7%, whereas in the cultured strains it ranged between 1.35% and 1.07%. Interestingly, heterozygosity rates were highest in the cultured populations, which is likely due to shellfish hatchery practices of crossing divergent strains to gain benefits of heterosis and to avoid inbreeding. Evidence of founder effects and drift were observed in the cultured strains, including high genetic differentiation between cultured populations and between cultured populations and the wild population. Cultured populations had effective population sizes ranging from 9-26 individuals whereas the wild population was estimated at 25-50K individuals. Further, a depletion of low frequency variants was observed in the cultured populations. These results indicate significant genetic diversity losses in cultured scallops in Canadian breeding programs. Article Summary Yesso scallop was introduced to breeding programs in Canada around 40 years ago and has become a valuable aquaculture species in the country with little information regarding its genetic diversity. This work genotypes over 20K genetic variants in wild Yesso scallops from Japan and compares to a major broodstock collection in British Columbia, Canada, as well as a commercial farm in the same region. Reduced polymorphism but elevated heterozygosity indicates value of using genetic information to guide breeding programs.
8
Citation1
0
Save
2

Impact of combinatorial histone modifications on acetyllysine recognition by the ATAD2 and ATAD2B bromodomains

Margaret Phillips et al.Nov 15, 2022
ABSTRACT The ATPase family AAA+ domain containing 2 (ATAD2) protein, and its paralog ATAD2B, have a C-terminal bromodomain that functions as a ‘reader’ of acetylated lysine residues on histone proteins. Using a structure-function approach, we investigated the ability of the ATAD2 and ATAD2B bromodomains to select acetylated lysine among multiple histone post-translational modifications. Isothermal titration calorimetry experiments revealed that the ATAD2 and ATAD2B bromodomains selectively recognize distinct patterns of acetylated lysine residues on the N-terminal tails of histone proteins. Adjacent methylation or phosphorylation marks were found to either enhance or weaken the recognition of acetylated lysine by the ATAD2/B bromodomains. Complementary structural studies provide mechanistic insights into how residues within the bromodomain binding pocket coordinate the acetyllysine group in the context of adjacent post- translational modifications. Furthermore, we investigated how sequence changes in amino acids of the histone ligands, either as ‘onco’ mutations or as histone variants, impact the recognition of an adjacent acetylated lysine residue. In summary, our study highlights how the interplay between multiple combinations of histone modifications influences the ‘reader’ activity of the ATAD2 and ATAD2B bromodomains, resulting in distinct binding modes of the two bromodomains. KEY POINTS Multiple independent ATAD2 gene duplication events are evident during metazoan evolution, indicating expansion of functionality in the ATAD2 gene family and suggesting distinct functions for ATAD2 and ATAD2B. High-resolution structures of the ATAD2 and ATAD2B bromodomains in complex with their histone ligands demonstrate how multiple post-translational modifications are coordinated. Recognition of different subsets acetylated histone ligands by the ATAD2 and ATAD2B bromodomains is driven by unique features within the binding pockets of these paralogous proteins. Onco-histone mutations and histone variants that change the amino acid sequence of the histone tails modulate the ATAD2 and ATAD2B bromodomain activity. This study demonstrates how the combinatorial activity of multiple post- translational modifications forms a histone code and influences the recognition of acetylated lysine by bromodomain-containing proteins.
2
Citation1
0
Save
1

High-density genetic linkage mapping in Sitka spruce advances the integration of genomic resources in conifers

Hayley Tumas et al.Aug 22, 2023
Abstract In species with large and complex genomes such as conifers, dense linkage maps are a useful for supporting genome assembly and laying the genomic groundwork at the structural, populational and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 SNP makers in Sitka spruce ( Picea sitchensis [Bong.] Carr.), a long-lived conifer from western North America that is widely planted for productive forestry in the British Isles. We used a single-step mapping approach to efficiently combine RAD-Seq and genotyping array SNP data for 528 individuals from two full-sib families. As expected for spruce taxa, the saturated map contained 12 linkages groups with a total length of 2,142 cM. The positioning of 5,414 unique gene coding sequences allowed us to compare our map with that of other Pinaceae species, which provided evidence for high levels of synteny and gene order conservation in this family. We then developed an integrated map for P. sitchensis and P. glauca based on 27,052 makers and 11,609 gene sequences. Altogether, these two linkage maps, the accompanying catalog of 286,159 SNPs and the genotyping chip developed herein opens new perspectives for a variety of fundamental and more applied research objectives, such as for the improvement of spruce genome assemblies, or for marker-assisted sustainable management of genetic resources in Sitka spruce and related species.
0

MTOR as a selectable genomic harbor for CRISPR-engineered CAR-T cell therapy

Sébastien Levesque et al.Jan 1, 2023
Chimeric antigen receptors (CARs) reprogram T cells to recognize and target cancer cells. Despite remarkable responses observed with CAR-T cell therapy in patients with hematological malignancies, CAR-T cell engineering still relies mostly on randomly integrating vectors, limiting the possibilities of fine-tuning T cell function. Here, we designed a CRISPR-based marker-free selection strategy to simultaneously target a therapeutic transgene and a gain-of-function mutation to the MTOR locus to enrich cells resistant to rapamycin, a clinically used immunosuppressant. We readily engineered rapamycin-resistant (RapaR) CAR-T cells by targeting CAR expression cassettes to the MTOR locus. Using in vitro cytotoxicity assays, and a humanized mouse model of acute lymphoblastic leukemia, we show that RapaR-CAR-T cells can efficiently target CD19+ leukemia cells in presence of rapamycin. Furthermore, our strategy allows multiplexed targeting of rapamycin-regulated immunoreceptors complexes (DARICs) to the MTOR and TRAC loci to pharmacologically control CAR-T cells9 activity. We foresee that our approach could both facilitate the enrichment of CRISPR-engineered CAR-T cells ex vivo and in vivo while improving tumor eradication.
7

Comparative Restriction Enzyme Analysis of Methylation (CREAM) Reveals Methylome Variability Within a ClonalIn VitroCannabis Population

Justin Boissinot et al.Aug 19, 2023
Abstract The primary focus of medicinal cannabis research is to ensure the stability of cannabis lines for consistent administration of chemically consistent products to patients. In recent years, tissue culture has emerged as a valuable technique for genetic preservation and rapid production of cannabis clones. However, there is concern that the physical and chemical conditions of the growing media can induce somaclonal variation, potentially impacting the viability and uniformity of clones. To address this concern, we developed Comparative Restriction Enzyme Analysis of Methylation (CREAM), a novel method to assess DNA methylation patterns and used it to assess a population of 78 cannabis clones maintained in tissue culture. Through bioinformatics analysis of the methylome, we successfully detected 2,272 polymorphic methylated regions among the clones. Remarkably, our results demonstrated that DNA methylation patterns were preserved across subcultures within the clonal population, allowing us to distinguish between two subsets of clonal lines used in this study. These findings significantly contribute to our understanding of the epigenetic variability within clonal lines in medicinal cannabis produced through tissue culture techniques. This knowledge is crucial for understanding the effects of tissue culture on DNA methylation and ensuring the consistency and reliability of medicinal cannabis products with therapeutic properties. Additionally, the CREAM method is a fast and affordable technology to get a first glimpse at methylation in a biological system. It offers a valuable tool for studying epigenetic variation in other plant species, thereby facilitating broader applications in plant biotechnology and crop improvement.