HS
Hilde Smeenk
Author with expertise in Infrared Detector Technologies
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
2
(100% Open Access)
Cited by:
3
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
34

Dissecting the neurotropism and neurovirulence of MPXV using human stem cell-based models

Lisa Bauer et al.Aug 28, 2023
Abstract Mpox, formerly known as monkeypox, is a zoonotic illness of international concern that can lead to severe disease including neurological sequelae. However, it remains unclear what the neurotropism of monkeypox virus (MPXV) is and how MPXV infection leads to neurological deficits. Here, we determined the neurotropism and neurovirulence of MPXV using human pluripotent stem cell- (hPSC)-derived neural stem cells, astrocytes, cortical neurons, and microglia together with ex vivo human brain tissue. We found that MPXV infects and replicates more efficiently in astrocytes and microglia compared to cortical neurons, which unlike glial cells showed activation of distinct antiviral programs that may confer differential susceptibility to MPXV. Ex vivo infection of human brain tissue confirmed the susceptibility of astrocytes to MPXV infection, which also had the strongest disease-associated changes. Molecular pathway analyses revealed induction of cellular senescence and a senescence-associated secretory phenotype upon MPXV infection in astrocytes. Finally, we demonstrated that antiviral treatment using tecovirimat inhibits MPXV replication and prevents virus-induced senescence in hPSC-derived astrocytes. Altogether, leveraging hPSC-derived brain cells, we reveal MPXV-induced cell type-specific effects at the molecular and cellular level, which provide important insights into the neuropathogenesis of MPXV infection.
34
Citation3
0
Save
0

Human adherent cortical organoids in a multiwell format

Mark Kroeg et al.Apr 16, 2024
In the growing diversity of human iPSC-derived models of brain development, we present here a novel method that exhibits 3D cortical layer formation in a highly reproducible topography of minimal dimensions. The resulting adherent cortical organoids develop by self-organization after seeding frontal cortex patterned iPSC-derived neural progenitor cells in 384-well plates during eight weeks of differentiation. The organoids have stereotypical dimensions of 3 x 3 x 0.2 mm, contain multiple neuronal subtypes, astrocytes and oligodendrocyte lineage cells, and are amenable to extended culture for at least 10 months. Longitudinal imaging revealed morphologically mature dendritic spines, axonal myelination, and robust neuronal activity. Moreover, adherent cortical organoids compare favorably to existing brain organoid models on the basis of robust reproducibility in obtaining topographically-standardized singular radial cortical structures and circumvent the internal necrosis that is common in free-floating cortical organoids. The adherent human cortical organoid platform holds considerable potential for high-throughput drug discovery applications, neurotoxicological screening, and mechanistic pathophysiological studies of brain disorders.