YH
Yingxiang Huang
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
539
h-index:
10
/
i10-index:
10
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
4

An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging

Nazish Sayed et al.Jul 12, 2021
While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8–96 years, we developed a deep-learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the early detection of age-related clinical phenotypes. From the blood immunome of 1,001 individuals aged 8–96 years, the authors used deep learning to develop an inflammatory clock of aging (iAge) that tracks with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The main contributor to iAge is the chemokine CXCL9, which is shown to control endothelial cell senescence and function.
4
Citation309
1
Save
0

A Consensus Genome-scale Reconstruction of Chinese Hamster Ovary Cell Metabolism

Hooman Hefzi et al.Nov 1, 2016

Summary

 Chinese hamster ovary (CHO) cells dominate biotherapeutic protein production and are widely used in mammalian cell line engineering research. To elucidate metabolic bottlenecks in protein production and to guide cell engineering and bioprocess optimization, we reconstructed the metabolic pathways in CHO and associated them with >1,700 genes in the Cricetulus griseus genome. The genome-scale metabolic model based on this reconstruction, iCHO1766, and cell-line-specific models for CHO-K1, CHO-S, and CHO-DG44 cells provide the biochemical basis of growth and recombinant protein production. The models accurately predict growth phenotypes and known auxotrophies in CHO cells. With the models, we quantify the protein synthesis capacity of CHO cells and demonstrate that common bioprocess treatments, such as histone deacetylase inhibitors, inefficiently increase product yield. However, our simulations show that the metabolic resources in CHO are more than three times more efficiently utilized for growth or recombinant protein synthesis following targeted efforts to engineer the CHO secretory pathway. This model will further accelerate CHO cell engineering and help optimize bioprocesses.
0
Citation230
0
Save
0

B Cells Promote T Cell Immunosenescence and Mammalian Aging Parameters

Saad Khan et al.Jan 1, 2023
A dysregulated adaptive immune system is a key feature of aging, and is associated with age-related chronic diseases and mortality. Most notably, aging is linked to a loss in the diversity of the T cell repertoire and expansion of activated inflammatory age-related T cell subsets, though the main drivers of these processes are largely unknown. Here, we find that T cell aging is directly influenced by B cells. Using multiple models of B cell manipulation and single-cell omics, we find B cells to be a major cell type that is largely responsible for the age-related reduction of naive T cells, their associated differentiation towards pathogenic immunosenescent T cell subsets, and for the clonal restriction of their T cell receptor (TCR). Accordingly, we find that these pathogenic shifts can be therapeutically targeted via CD20 monoclonal antibody treatment. Mechanistically, we uncover a new role for insulin receptor signaling in influencing age-related B cell pathogenicity that in turn induces T cell dysfunction and a decline in healthspan parameters. These results establish B cells as a pivotal force contributing to age-associated adaptive immune dysfunction and healthspan outcomes, and suggest new modalities to manage aging and related multi-morbidity.
9

Restoration of deficient DNA Repair Genes Mitigates Genome Instability and Increases Productivity of Chinese Hamster Ovary Cells

Philipp Spahn et al.Jan 7, 2021
Abstract Chinese Hamster Ovary (CHO) cells are the primary host used for manufacturing of therapeutic proteins. However, production instability of high-titer cell lines is a major problem and is associated with genome instability, as chromosomal aberrations reduce transgene copy number and decrease protein titer. We analyzed whole-genome sequencing data from 11 CHO cell lines and found deleterious single-nucleotide polymorphisms (SNPs) in DNA repair genes. Comparison with other mammalian cells confirmed DNA repair is compromised in CHO. Restoration of key DNA repair genes by SNP reversal or expression of intact cDNAs improved DNA repair and genome stability. Moreover, the restoration of LIG4 and XRCC6 in a CHO cell line expressing secreted alkaline phosphatase mitigated transgene copy loss and improved protein titer retention. These results show for the first time that correction of key DNA repair genes yields considerable improvements in stability and protein expression in CHO, and provide new opportunities for cell line development and a more efficient and sustainable production of therapeutic proteins.