MB
Matthew Bernstein
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
499
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Large-Scale Multi-omic Analysis of COVID-19 Severity

Katherine Overmyer et al.Oct 8, 2020
+26
I
E
K
We performed RNA-seq and high-resolution mass spectrometry on 128 blood samples from COVID-19-positive and COVID-19-negative patients with diverse disease severities and outcomes. Quantified transcripts, proteins, metabolites, and lipids were associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many of which were involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a machine learning approach for prediction of COVID-19 severity.
0
Citation487
0
Save
62

SpatialCorr: Identifying Gene Sets with Spatially Varying Correlation Structure

Matthew Bernstein et al.Feb 8, 2022
+5
A
Z
M
Abstract Recent advances in spatially resolved transcriptomics technologies enable both the measurement of genome-wide gene expression profiles and their mapping to spatial locations within a tissue. A first step in spatial transcriptomics data analysis is identifying genes with expression that varies spatially, and robust statistical methods exist to address this challenge. While useful, these methods do not detect spatial changes in the coordinated expression within a group of genes. To this end, we present SpatialCorr, a method for identifying sets of genes with spatially varying correlation structure. Given a collection of gene sets pre-defined by a user, SpatialCorr tests for spatially induced differences in the correlation of each gene set within tissue regions, as well as between and among regions. An application to cutaneous squamous cell carcinoma demonstrates the power of the approach for revealing biological insights not identified using existing methods.
62
Citation5
0
Save
0

CellO: Comprehensive and hierarchical cell type classification of human cells with the Cell Ontology

Matthew Bernstein et al.May 10, 2019
C
M
Z
M
Summary Cell type annotation is a fundamental task in the analysis of single-cell RNA-sequencing data. In this work, we present CellO, a machine learning-based tool for annotating human RNA-seq data with the Cell Ontology. CellO enables accurate and standardized cell type classification by considering the rich hierarchical structure of known cell types, a source of prior knowledge that is not utilized by existing methods. Furthemore, CellO comes pre-trained on a novel, comprehensive dataset of human, healthy, untreated primary samples in the Sequence Read Archive, which to the best of our knowledge, is the most diverse curated collection of primary cell data to date. CellO’s comprehensive training set enables it to run out-of-the-box on diverse cell types and achieves superior or competitive performance when compared to existing state-of-the-art methods. Lastly, CellO’s linear models are easily interpreted, thereby enabling exploration of cell type-specific expression signatures across the ontology. To this end, we also present the CellO Viewer: a web application for exploring CellO’s models across the ontology. Highlight We present CellO, a tool for hierarchically classifying cell type from single-cell RNA-seq data against the graph-structured Cell Ontology CellO is pre-trained on a comprehensive dataset comprising nearly all bulk RNA-seq primary cell samples in the Sequence Read Archive CellO achieves superior or comparable performance with existing methods while featuring a more comprehensive pre-packaged training set CellO is built with easily interpretable models which we expose through a novel web application, the CellO Viewer, for exploring cell type-specific signatures across the Cell Ontology Graphical Abstract
0
Citation4
0
Save
13

CHARTS: A web application for characterizing and comparing tumor subpopulations in publicly available single-cell RNA-seq datasets

Matthew Bernstein et al.Sep 25, 2020
+3
M
Z
M
Abstract Background Single-cell RNA-seq (scRNA-seq) enables the profiling of genome-wide gene expression at the single-cell level and in so doing facilitates insight into and information about cellular heterogeneity within a tissue. Perhaps nowhere is this more important than in cancer, where tumor and tumor microenvironment heterogeneity directly impact development, maintenance, and progression of disease. While publicly available scRNA-seq cancer datasets offer unprecedented opportunity to better understand the mechanisms underlying tumor progression, metastasis, drug resistance, and immune evasion, much of the available information has been underutilized, in part, due to the lack of tools available for aggregating and analysing these data. Results We present CHARacterizing Tumor Subpopulations (CHARTS), a computational pipeline and web application for analyzing, characterizing, and integrating publicly available scRNA-seq cancer datasets. CHARTS enables the exploration of individual gene expression, cell type, malignancy-status, differentially expressed genes, and gene set enrichment results in subpopulations of cells across multiple tumors and datasets. Conclusion CHARTS is an easy to use, comprehensive platform for exploring single-cell subpopulations within tumors across the ever-growing collection of public scRNA-seq cancer datasets. CHARTS is freely available at charts.morgridge.org .
13
Citation3
0
Save
0

Monkeybread: A Python toolkit for the analysis of cellular niches in single-cell resolution spatial transcriptomics data

Matthew Bernstein et al.Jan 1, 2023
+8
C
D
M
Spatial transcriptomics technologies enable the spatially resolved measurement of gene expression within a tissue specimen. With these technologies, researchers can investigate how cells organize into cellular niches which are defined as distinct regions in the tissue comprising a specific composition of cell types or phenotypes. While general-purpose software tools for the exploratory analysis of spatial transcriptomics data exist, there is a need for tools that specialize in the analysis of cellular organization into niches. This can further enhance the downstream application of these data towards drug target discovery, target validation, and biomarker development. We present Monkeybread: A Python toolkit for analyzing cellular organization and intercellular communication in single-cell resolution spatial transcriptomics data. We applied Monkeybread to a human melanoma sample to demonstrate its utility in identifying cellular niches with diverse immunogenic compositions in the tumor microenvironment. We found that these niches were differentially enriched for immunogenic and tolerogenic macrophage populations that could be correlated to T cell abundance. These findings highlight how Monkeybread can be used for revealing underlying biology of the tumor microenvironment, and in the future, for understanding the influence of these niches on response to available treatments and discovery of novel drug targets.
0

MetaSRA: normalized sample-specific metadata for the Sequence Read Archive

Matthew Bernstein et al.Nov 30, 2016
C
A
M
Motivation: The NCBI's Sequence Read Archive (SRA) promises great biological insight if one could analyze the data in the aggregate; however, the data remain largely underutilized, in part, due to the poor structure of the metadata associated with each sample. The rules governing submissions to the SRA do not dictate a standardized set of terms that should be used to describe the biological samples from which the sequencing data are derived. As a result, the metadata include many synonyms, spelling variants, and references to outside sources of information. Furthermore, manual annotation of the data remains intractable due to the large number of samples in the archive. For these reasons, it has been difficult to perform large-scale analyses that study the relationships between biomolecular processes and phenotype across diverse diseases, tissues, and cell types present in the SRA. Results: We present MetaSRA, a database of normalized SRA sample-specific metadata following a schema inspired by the metadata organization of the ENCODE project. This schema involves mapping samples to terms in biomedical ontologies, labeling each sample with a sample-type category, and extracting real-valued properties. We automated these tasks via a novel computational pipeline. Availability: The MetaSRA database is available at http://deweylab.biostat.wisc.edu/metasra. Software implementing our computational pipeline is available at https://github.com/deweylab/metasra-pipeline.