KJ
Kang Jin
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
11
(82% Open Access)
Cited by:
20
h-index:
13
/
i10-index:
16
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

iPSC modeling shows uncompensated mitochondrial mediated oxidative stress underlies early heart failure in hypoplastic left heart syndrome

Xiangyan Xu et al.May 10, 2021
Summary Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect with 30% mortality from heart failure (HF) in the first year of life, but why only some patients suffer early-HF and its cause remain unknown. Modeling using induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) showed early-HF patient iPSC-CM have increased apoptosis, redox stress, and failed antioxidant response. This was associated with mitochondrial permeability transition pore (mPTP) opening, mitochondrial hyperfusion and respiration defects. Whereas iPSC-CM from patients without early-HF had hyper-elevated antioxidant response with increased mitochondrial fission and mitophagy. Single cell transcriptomics showed dichotomization by HF outcome, with mitochondrial dysfunction and endoplasmic reticulum (ER) stress associated with early-HF. Importantly, oxidative stress and apoptosis associated with early HF were rescued by sildenafil inhibition of mPTP opening or TUDCA suppression of ER stress. Together these findings demonstrate a new paradigm for modeling clinical outcome in iPSC-CM, demonstrating uncompensated mitochondrial oxidative stress underlies early HF in HLHS.
0
Citation5
0
Save
1

Guided construction of single cell reference for human and mouse lung

Minzhe Guo et al.May 20, 2022
ABSTRACT Accurate cell type identification is a key and rate-limiting step in single cell data analysis. Single cell references with comprehensive cell types, reproducible and functional validated cell identities, and common nomenclatures are much needed by the research community to optimize automated cell type annotation and facilitate data integration, sharing, and collaboration. In the present study, we developed a novel computational pipeline to utilize the LungMAP CellCards as a dictionary to consolidate single-cell transcriptomic datasets of 104 human lungs and 17 mouse lung samples and constructed “LungMAP CellRef” and “LungMAP CellRef Seed” for both normal human and mouse lungs. “CellRef Seed” has an equivalent prediction power and produces consistent cell annotation as does “CellRef” but improves computational efficiency and simplifies its utilization for fast automated cell type annotation and online visualization. This atlas set incorporates 48 human and 40 mouse well-defined lung cell types catalogued from diverse anatomic locations and developmental time points. Using independent datasets, we demonstrated the utility of our CellRefs for automated cell type annotation analysis of both normal and disease lungs. User-friendly web interfaces were developed to support easy access and maximal utilization of the LungMAP CellRefs. LungMAP CellRefs are freely available to the pulmonary research community through fast interactive web interfaces to facilitate hypothesis generation, research discovery, and identification of cell type alterations in disease conditions.
1
Citation4
0
Save
8

Schizophrenia-associatedNRXN1deletions induce developmental-timing- and cell-type-specific vulnerabilities in human brain organoids

Rebecca Sebastian et al.Aug 25, 2022
Abstract De novo mutations and copy number deletions in NRXN1 (2p16.3) pose a significant risk for schizophrenia (SCZ). It is unclear how NRXN1 deletions impact cortical development in a cell type-specific manner and disease background modulates these phenotypes. Here, we leveraged human pluripotent stem cell-derived forebrain organoid models carrying NRXN1 heterozygous deletions in isogenic and SCZ patient genetic backgrounds and conducted single-cell transcriptomic analysis over the course of brain organoid development from 3 weeks to 3.5 months. Intriguingly, while both deletions similarly impacted molecular pathways associated with ubiquitin-proteasome system, alternative splicing, and synaptic signaling in maturing glutamatergic and GABAergic neurons, SCZ- NRXN1 deletions specifically perturbed developmental trajectories of early neural progenitors and accumulated disease-specific transcriptomic signatures. Using calcium imaging, we found that both deletions led to long-lasting changes in spontaneous and synchronous neuronal networks, implicating synaptic dysfunction. Our study reveals developmental-timing- and cell-type-dependent actions of NRXN1 deletions in unique genetic contexts.
8
Citation2
0
Save
0

Cross-Platform Validation of Neurotransmitter Release Impairments in Schizophrenia Patient-DerivedNRXN1-Mutant Neurons

ChangHui Pak et al.Nov 3, 2020
ABSTRACT Heterozygous NRXN1 deletions constitute the most prevalent currently known single-gene mutation predisposing to schizophrenia. Previous studies showed that engineered heterozygous NRXN1 deletions impaired neurotransmitter release in human neurons, suggesting a synaptic pathophysiological mechanism. Utilizing this observation for drug discovery, however, requires confidence in its robustness and validity. Here, we describe a multi-center effort to test the generality of this pivotal observation, using independent analyses at two laboratories of patient-derived and newly engineered human neurons with heterozygous NRXN1 deletions. We show that in neurons that were trans-differentiated from induced pluripotent stem cells derived from three NRXN1 -deletion patients, the same impairment in neurotransmitter release was observed as in engineered NRXN1 -deficient neurons. This impairment manifested as a decrease in spontaneous synaptic events and in evoked synaptic responses, and an alteration in synaptic paired-pulse depression. Nrxn1 -deficient mouse neurons generated from embryonic stem cells by the same method as human neurons did not exhibit impaired neurotransmitter release, suggesting a human-specific phenotype. NRXN1 deletions produced a reproducible increase in the levels of CASK, an intracellular NRXN1 -binding protein, and were associated with characteristic gene expression changes. Thus, heterozygous NRXN1 deletions robustly impair synaptic function in human neurons regardless of genetic background, enabling future drug discovery efforts.
0
Citation1
0
Save
0

Bering: joint cell segmentation and annotation for spatial transcriptomics with transferred graph embeddings

Kang Jin et al.Jan 1, 2023
Single-cell spatial transcriptomics such as in-situ hybridization or sequencing technologies can provide subcellular resolution that enables the identification of individual cell identities, locations, and a deep understanding of subcellular mechanisms. However, accurate segmentation and annotation that allows individual cell boundaries to be determined remains a major challenge that limits all the above and downstream insights. Current machine learning methods heavily rely on nuclei or cell body staining, resulting in the significant loss of both transcriptome depth and the limited ability to learn latent representations of spatial colocalization relationships. Here, we propose Bering, a graph deep learning model that leverages transcript colocalization relationships for joint noise-aware cell segmentation and molecular annotation in 2D and 3D spatial transcriptomics data. Graph embeddings for the cell annotation are transferred as a component of multi-modal input for cell segmentation, which is employed to enrich gene relationships throughout the process. To evaluate performance, we benchmarked Bering with state-of-the-art methods and observed significant improvement in cell segmentation accuracies and numbers of detected transcripts across various spatial technologies and tissues. To streamline segmentation processes, we constructed expansive pre-trained models, which yield high segmentation accuracy in new data through transfer learning and self-distillation, demonstrating the generalizability of Bering.
5

Loss of Neurodevelopmental Gene CASK Disrupts Neural Connectivity in Human Cortical Excitatory Neurons

Danny McSweeney et al.Feb 15, 2022
Summary Loss-of-function (LOF) mutations in CASK cause severe developmental phenotypes, including microcephaly with pontine and cerebellar hypoplasia, X-linked intellectual disability, and autism. Unraveling the pathogenesis of CASK -related disorders has been challenging due to limited human cellular models to study the dynamic roles of this molecule during neuronal and synapse development. Here, we generated CASK knockout (KO) isogenic cell lines from human embryonic stem cells (hESCs) using CRISPR/Cas9 and examined gene expression, morphometrics, and synaptic function of induced neuronal cells during development. While young (immature) CASK KO neurons show robust neuronal outgrowth, mature CASK KO neurons displayed severe defects in synaptic transmission and synchronized burst activity without compromising neuronal morphology and synapse numbers. In developing human cortical neurons, CASK functioned to promote both structural integrity and establishment of cortical excitatory neuronal networks. These results lay the foundation for future studies to identify suppressors of such phenotypes relevant to human patients. Highlights CASK LOF mutations increase neuronal complexity in immature developing neurons CASK LOF does not alter synapse formation and neurite complexity in mature neurons Synaptic transmission and network synchronicity are compromised in CASK KO neurons Differential gene expression analysis reveals enrichment of synaptic gene networks in mature CASK KO neurons
Load More